
SIEMENS

Climatix™

Heat Recovery Ventilation with S300 HRV controllers

Application Guide

Table of contents

1	Safety		
1.1	Legal n	ote	5
2	About	this document	6
2.1	Docum	ent conventions	6
2.2	Revisio	n history	6
2.3	Validity	·	8
2.4	Before	you start	8
	2.4.1	Trademarks	8
	2.4.2	Copyright	9
	2.4.3 2.4.4	Target readers Purpose of the document	9 9
2.5		iations	10
2.5		entation and short description of compatible devices	11
-			
3		description of application	15
3.1	•	n overview - Topology	16
3.2		atic plant diagram	17
	3.2.1 3.2.2	Preheating (PreHcl) Dampers (Dmp)	19 20
	3.2.2		20
	3.2.4		22
	3.2.5	Cooling (Ccl)	23
	3.2.6	ö ö (<i>)</i>	24
	3.2.7	Control inputs / outputs	25
4	Config	uration	26
4.1	Wireles	s connection with POL903	26
4.2		5	27
	4.2.1	3	28
	4.2.2 4.2.3	6	29 29
4.3			30
4.4		-	32
т.т	4.4.1	•	32
	4.4.2	•	33
	4.4.3	QMX room sensors	33
4.5	Configu	uring the hardware	34
	4.5.1		38
	4.5.2		45
	4.5.3 4.5.4	5	49 50
16			
4.6	Genera 4.6.1	8	52 52
	4.6.2	0	54
	4.6.3		54
	4.6.4	Controller configuration: password protected access by user	
			55
	4.6.5	Factory Reset	55

5	Applica	ation functionalities	56
5.1	Applica	tion use cases	56
5.2	Control	ling of operating modes	57
5.3	Operati	ng mode categories	58
	5.3.1	Normal modes	58
	5.3.2	Temporary modes	59
	5.3.3 5.3.4	Special modes (At home / Away) Off mode	60 60
5 /			61
5.4		ng mode settings	
5.5	Fan spe 5.5.1	eed control Linear fan speed (VntCtl23y, FanSu23y, FanEh23y)	62 63
	5.5.2	Constant air flow regulation (VntCtl21y, FanSu21y, FanEh21y)	67
	5.5.3	Constant duct pressure (VntCtl22y, FanSu22y, FanEh22y)	73
	5.5.4	Fan speed control for temporary modes	78
5.6	•	lity control (VntCtl11y, 12y, 13y)	
	5.6.1 5.6.2	CO2 / carbon dioxide, (AQualCtl21y)	80
		Fine dust (PmCtl21y)	82
5.7		midity control (DhuCtl11y)	
5.8		ty evaluation with temperature sensors (HuREvl21y)	
5.9		perature control	91
	5.9.1 5.9.2	Supply air temperature control (TSuCtIH21y) Supply air regulation with outdoor temperature compensation	91 95
	5.9.3	Extract (room) temperature cascade control (TCasCtlH21y and	00
		TCasCtlC21y)	96
	5.9.4	Fan heating/cooling influence	99
5.10	•••	Recovery	
	5.10.1 5.10.2	Rotational Heat Exchanger (RotHExg21y) Passive Heat Exchanger, controlled (PltHExg21y)	100 108
	5.10.2	Passive Heat Exchanger, uncontrolled (PithExg22y)	116
5.11		······································	
••••	5.11.1	Water based heating with frost protection (HclHw21y)	120
	5.11.2	Electrical heater (HclEl21y)	123
5.12			125
	5.12.1	Cooling coil chilled water (CclChw21y)	125
	5.12.2 5.12.3	DX based cooling (CclDx21y) Free cooling (FreeCDtr11y)	126 127
5.13		rs	128
5.15	5.13.1	Outside air shut off dampers (DmpShoffOa11y)	128
	5.13.2	Recirculating air damper (DmpMx21y)	129
5.14	Filter su	upervision (FilAMon21y)	131
5.15		ting Functions	133
	5.15.1	Earth to Air Heat Exchanger (EaHExg21y)	133
	5.15.2	Brine Coil (PreHclBne21y)	134
	5.15.3	Electric Preheating Coil (PreHclEl21y)	135
5.16		ned heating / cooling coil (HCcl21y)	
5.17		I dehumidifier	
5.18	Fire da	mper (Fdp11y)	142
5.19	Priority	list	144
5.20	Start-up	o / shut-down sequence	145
5.21	Safety f	functions (SftyCtl11y)	
	5.21.1	Duct temperature supervision	147

	5.21.2	Fire / smoke / emergency off	148
5.22	Time co	punters	149
5.23	5.23.1 5.23.2	Unctions General Alarm codes Error presentation in Cloud	150 150 154 156
5.24	Periodio	cal maintenance function	157
5.25	Analysi	s functions	158
6	Engine	ering of communicative devices	161
6.1	PL-Link		161
6.2	6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	s components I/O extension module POS9 Air pressure sensor #1 QBM97 Air pressure sensor #2 QBM97 Ebm-papst supply air fan Ebm-papst exhaust air fan Zero pressure calibration	163 164 165 166 168 169
6.3	Modbus 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9	s slave Use cases for Modbus slave engineering Port description and default settings Port adjustments R/W communication functions (supported function codes) Encoding of data types Mapping application parameters to Modbus registers Edit schedule Device information Delivery of the application parameter list	170 170 170 170 172 175 178 183 185 186

1 Safety

1.1 Legal note

Legal note concept

This guide includes notes that must be followed to prevent damage to property. Notes dealing only with damage to property use the signal word NOTICE and an exclamation point.

They are depicted as follows:

l	NOTICE
•	Type and source of hazard
	Consequences in the event the hazard occurs
	Controls/prohibitions to prevent the hazard
Qualified personnel	Only qualified personnel may commission the device/system. Qualified personnel for purposes refer to qualified due to training and experience to recognize and avoid risks when working with this device/system.
Proper use	The device/system described here may only be used in building technical plants and for the described applications only.
	The trouble-free and safe operation of the device/system described here requires proper transportation, correct warehousing, mounting, installation, commissioning, operation, and maintenance.
	You must comply with permissible ambient conditions. You must comply with the information provided in the Section "Technical data" and notes in the associated documentation.
	Fuses, switches, wiring and grounding must comply with local safety regulations for electrical installations. Observe all local and currently valid laws and regulations.
Exemption from liability	The content of this document was reviewed to ensure it matches the hardware and firmware described herein. Deviations cannot be precluded, however, so that we cannot guarantee that the document fully matches the actual device/system. The information provided in this document is reviewed on a regular basis and any required corrections are added to the next edition.

2 About this document

2.1 Document conventions

Depiction of text markups

Special text markups are displayed as follows in this document:

⊳	Prerequisite for an instruction
\Rightarrow	Interim result of an instruction
⇒	Final result of an instruction
Text	Hyperlink, reference
"Text"	Term that has a standing definition in the program

Depiction information/tips

The "i" symbol identifies supplemental information and tips to simplify procedures.

Version	Date	Changes	Section
d	2021-05-10	New features, changes, corrections	
		Shut off dampers	Whole document
		Mixing air damper	Whole document
		Change over coil	Whole document
		New BACnet objects in 'Available parameters'	Whole document
		'Control functions' added	Choosing the functions $[\rightarrow 30]$
		Schematic plant diagram revised	Schematic plant diagram [→ 17]
		Note added	Ebm-papst supply air fan [→ 166] Ebm-papst exhaust air fan [→ 168]
		'Device information' added	Device information [→ 185]
с	2020-12-16	New features, changes, corrections	
		New chapter added	Password security
		Info on password added	Accessing the device [→ 28]
		'Output A21' enhanced	Extension module [→ 47]
		Additional information on 'Fan speed monitoring'	Linear fan speed (VntCtl23y, FanSu23y, FanEh23y) [→ 63]
			Constant air flow regulation (VntCtl21y, FanSu21y, FanEh21y) [→ 67]
			Constant duct pressure (VntCtl22y, FanSu22y, FanEh22y) [→ 73]
		Additional information on 'Air temperature control'	Supply air temperature control (TSuCtIH21y) [→ 91]
			Supply air regulation with outdoor temperature compensation [→ 95]
			Fan heating/cooling influence [→ 99]
		New chapter added	Recirculating air damper (DmpMx21y) [→ 129]
		Additions to 'Start-up sequences'	Start-up / shut-down sequence [→ 145]
		Changes to 'Alarm class settings'	General [→ 150]
		Changes to 'Alarm class' and 'Influence of alarm'	Alarm codes [→ 154]

2.2 Revision history

Version	Date	Changes	Section
		BAcnet objects' revised	Air pressure sensor #2 QBM97 [→ 165]
		'Remark' enhanced	Ebm-papst supply air fan [→ 166]
		'Remark' enhanced	Ebm-papst exhaust air fan [→ 168]
		New BACnet object property	Port adjustments [→ 170]
		Chapters revised	Encoding of data types [→ 175] Mapping application parameters to Modbus registers [→ 178]
		New chapter added	Edit schedule [→ 183]
		New chapter added	Device information [→ 185]
b	2020-07-16	Device changes	
		 Controller POS3.3515/100 deleted WLAN stick POL903 introduced 2. QBM97 #2 introduced 	different sections
		New features, changes, corrections	
			Controller board [→ 38]
		Several corrections	3.5.x
		New sections	Controller configuration: password protected access by user roles [→ 55], Factory Reset [→ 55]
		Modbus objects introduced	4.5.x
		Several corrections	4.5.3
		Several corrections	4.6.2
		Corrections and function extensions	Energy Recovery [→ 100]
		Functions extension	Filter supervision (FilAMon21y) [→ 131]
		Several corrections	4.14, 4.15
		Several corrections	4.21.2
		Restructured, extended, corrected	Modbus components [→ 162]
		New sections	Ebm-papst supply air fan [→ 166], Ebm-papst exhaust air fan [→ 168]
		New large section	Modbus slave [→ 170]
		Cloud connectivity is documented in the S300 cloud documentation	
		First edition	
а	2019-10-18		

2.3 Validity

This document applies to the following application:

Application	Version	Hardware (ASN)
Climatix heat recovery ventilation application	2.473 and above	POS3.5715/100

2.4 Before you start

2.4.1 Trademarks

The trademarks used in this document are listed together with their legal owners in the following table. The use of these trademarks is subject to international and national statutory provisions.

Trademarks	Legal owner
BACnet™	American National Standard (ANSI/ASHRAE 135-1995)
KNX®	Konnex Association, B - 1831 Brussels-Diegem Belgium <u>http://</u> www.konnex.org/
MODBUS®	The Modbus Organization, Hopkinton, MA, USA

All the product names listed are trademarks ($^{\text{TM}}$) or registered trademarks ($^{\text{R}}$) of their respective owners, as listed in the table. Further to the notes in this section, and to facilitate the reading of the text, these trademarks will not be indicated elsewhere in the text (e.g. by use of symbols such as $^{\text{R}}$ or $^{\text{TM}}$).

2.4.2 Copyright

This document may only be duplicated and distributed with the express permission of Siemens and may be passed only to authorized persons or companies with the required technical knowledge.

2.4.3 Target readers

Target audience for this manual are development departments of HVAC manufacturers (OEM) as well as installers of the S300 HRV.

2.4.4 Purpose of the document

This document describes the Siemens Standard Heat Recovery Ventilation (HRV) application. It provides an overview for the configuration and operation of the application, as well as descriptions of the functionalities.

!	NOTICE
Depicted application are exemplary	
	This document is not intended to provide detailed information about possible required parameters, configuration, device combinations, hardware options, etc. If some of them are shown, they are intended as examples only.

2.5 Abbreviations

The following abbreviations are used throughout the document:

AQ	Air quality
CO2	Carbon dioxide
Configured BI	A configured binary input can be used as a rudimentary user interface
DP switch	Differential pressure switch
ERC	Energy recovery
FB	Feedback
HRV	Heat Recovery Ventilation
I/O	Input / Output
MAN	Manual operation mode
Max	Maximum
Min	Minimum
NC	Normally closed
NO	Normally open
РМ	Particulate matter
R/RW	Read only / Read and writable value
rH	Relative Humidity
TSP	Time Switch Program
VAV	Variable Air Volume

2.6 Documentation and short description of compatible devices

Application documents

Document title	Document type	Document ID
Climatix S300 Heat Recovery Ventilation	Application guide	A6V11417931 (this document)
S300 HRV End User Climatix App (see also "Apps, access")	Quick Guide	A6V11841954
Climatix IC remote monitoring and intelligent diagnostics	Guide: Getting started	A6V11858804
(see also "Remote access")	Guide: Service and Enduser	A6V11849163

Basic controller

Document title			Document type			Document ID		
S300 Heat Recovery Ventilation Controller, POS3.3515/100; POS3.5715/100		Datasheet			A6V11417931			
Type number	Stock number	Application		Inputs	;	Outputs	Comm. Bus	MOQ
POS3.5715/100	S55393-C571-F100		Controller for heat recovery ventilation, standard application, with KNX PL-Link interface			8	KNX, Modbus, BACnet	1

Connectors

Type number	Stock nr.	Product description, application	Pole	Area	Phoenix type ¦ Phoenix key	MOQ
POL005.15/STD	S55843- Z151-F100	2-pole connector orange, power supply	2	230 V	Phoenix:1773879 MVSTBW 2,5/2-ST OG	100
POL005.25/STD	S55843- Z152-F100	2-pole connector	2	230 V	Phoenix:1792524 MVSTBW 2,5/2-ST	100
POL005.35/STD	S55843- Z152-F100	3-pole connector	3	230 V	Phoenix:1792537 MVSTBW 2,5/3-ST	100
-	-	4-pole	-	-	Note: use 2-pole connectors	-
POS0.3325/100	S55844- Z332-F100	2-pole connector	2	SELV	FK-MC 0,5/2-ST-2,5 1881325	100
POS0.3335/100	S55844- Z333-F100	3-pole connector	3	SELV	FK-MC 0,5/3-ST-2,5 1881338	100
POS0.3345/100	S55844- Z334-F100	4-pole connector	4	SELV	FK-MC 0,5/4-ST-2,5 1881341	100
POS0.3365/100	S55844- Z336-F100	6-pole connector	6	SELV	FK-MC 0,5/6-ST-2,5 1881367	100
POS0.3375/100	S55844- Z337-F100	7-pole connector	7	SELV	FK-MC 0,5/7-ST-2,5 1881370	100
POS0.3385/100	S55844- Z338-F100	8-pole connector	8	SELV	FK-MC 0,5/8-ST-2,5 1881383	100

Document title			Documen	Document type			Document ID		
Modbus I/O extension module for POS3, POS9.1515/100		Datasheet				A6V11725998			
Modbus air pressure sensor with I/O extension, QBM97			Datasheet	Datasheet			A6V11478118		
Mountin		Mounting i	instru	ictions		A6V11478123			
Type number	Stock number	Product description, app	olication	Ser	isor element	Inputs	Output s	Com	MOQ
POS9.1515/100	S55663-J351- F100	Modbus air pressure sens extension, on PCB	or with I/O	•	Pressure (2)	2	2	Modbus slave	20
QBM97	See datasheet	extension, with housing,	Modbus air pressure sensor with I/O extension, with housing, piezo- resistive pressure sensing element		Pressure (1 or 2)	2	2	Modbus slave	20

Modbus I/O extension modules with air pressure sensors

Room operator units with sensors

Document title	Document type	Document ID
Room operator units	Basic documentation	A6V11471220
POS8.4420/109; POS8.4440/109	Data sheet	A6V11519429
	Mounting instructions	A6V10733764

Type number	Stock number	Product description, application	Sei	nsor element	Display	Com	MOQ
POS8.4420/109	S55625-H422- A100	Room operator unit with temperature sensor	•	Temperatur e	LCD with backlight	KNX PL- Link	20
POS8.4440/109	S55625-H444- A100	Room operator unit with temperature and humidity sensor	•	Temperatur e Humidity	LCD with backlight	KNX PL- Link	20

Room sensors

Document title	Document type	Document ID
Wall-mounted sensors and room operator units QMX3.P	Data sheet	N1602
Room sensors for relative humidity and temperature QFA20	Datasheet	CE1N1857
Fine Dust Room Sensors QSA2700D / QSA2700 / AQS2700	Datasheet	A6V11160938

Type number	Stock number	Product description, application	Se	nsor element	Display	Com	MOQ
QMX3.P30	S55624-H103		•	Temperatur e	-	KNX PL- Link	1
QMX3.P40	S55624-H116	Room sensors with different sensor combinations	•	Temperatur e Humidity	-	KNX PL- Link	1
QMX3.P70	S55624-H104		•	Temperatur e	LED for air quality	KNX PL- Link	1
			•	Humidity			
			•	CO ₂			
			•	Air quality			

Note: the listed devices are compatible with POS3.5715/ 100.

Туре	Stock number	Product description	Sensor element	Display	Signal	MOQ
QFA20	See Datasheet	Room sensor with different sensor combinations	• Temperatur e	Optional	DC 0 10 V	1
			Air quality			
			• CO ₂ ,			
			VOC			
			Humidity			
QSA2700	See Datasheet	Room fine dust sensor	Fine dust PM2.5-10	Optional	DC 0 10 V	1

Note: the listed devices are compatible with POS3.3515/100 or POS3.5715/100.

Duct sensors

Document title		Document type		Document ID		
Duct Temperature Sensors QAM21		Datasheet	Datasheet			
Duct sensors QF	M31	Datasheet		CE1N1882		
Duct Air Quality S	Sensors QPM11, QPM21	Datasheet		CE1N1962		
Туре	Product description	Sensor element	Display	Output	MOQ	
QAM21	Duct sensors, temperature	Temperature	-	NTC 10k	1	
QFM31	Duct sensors, rel. humidity / temp. for demanding requirements	TemperatureHumidity	Optional	010 VDC	1	
QPM11	Duct air quality sensor VOC	VOC	-	010 VDC	1	
QPM21	Duct air quality sensor, CO2/ temperature / rel. humidity / VOC	CO2HumidityTemperature	Optional	010 VDC	1	

2

Damper actuators

Type number	Document ID	Product description, application	Output	Com	MOQ
GSD6	N4606	Damper actuator 2 Nm without spring return	DC 010 V	-	20

Note: the listed devices are compatible with POS3.3515/100 or POS3.5715/100

The GSD..6 damper actuators can only be used for heat exchanger (bypass).

WLAN USB stick

Type number	Stock number	Document ID	Product description, application	Com	MOQ
POL903.00/100	S55803-Y130-A100	CC1N7219	WLAN Stick for POS3.xx	WiFi	1

Apps, access and services

Name	Product description, application	Provider	Access
ABT Site	Configuration software for Hardware and software settings	Siemens Free download	Windows
ABT Go *	Commissioning app for installation, servicing, configuration, settings, parameter copy, file share	Siemens free download Customizable upon request	Android: Google Play iOS: App store
End-user Climatix app	Operation app for end-user including scheduler	Customizable start code from Siemens available. Please address to local sales representative.	In the responsibility of the customer

* ABT Go contains a comprehensive online documentation.

Cloud-based remote monitoring and intelligent diagnostics system

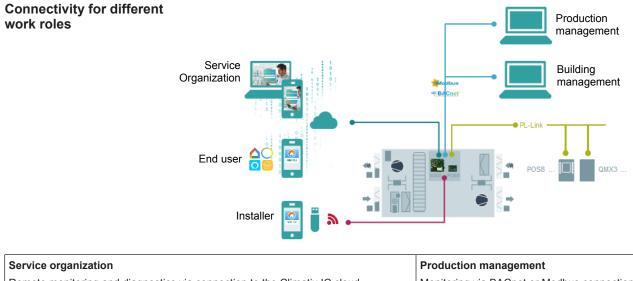
Document title		Doci	ument type	Document ID
Climatix IC20 Remote Servicing		Data	sheet DE, EN	A6V10449189
Type number Product description, application			Remote access	
IC20.xxx	Cloud based remote monitoring and intelligent diagnostics		 Location plant overview Plant Dashboards Web graphics Monitoring trending alarming Remote FW upgrade API * 	

*API = Application Programming Interface for third party integration (clouds, applications, business software)

Notes

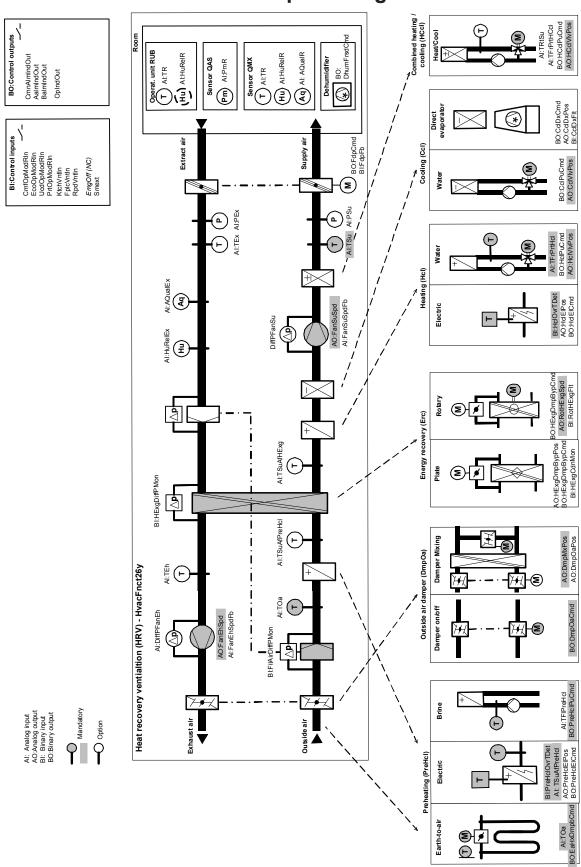
- MOQ: Minimum order quantity
- For ordering, check the device datasheets, for type number, stock number and quantity. Make sure the number of devices in one package equals MOQ (minimum order quantity).

3


3 Short description of application

•	
S300 HRV application	The S300 configurable OEM controller for HVAC controlling, switching and monitoring comes with pre-engineered applications, and is optimized for heat recovery ventilation.
	The purpose of this integrated and ready to use solution is to control residential heat recovery ventilation appliances in various market areas and needs.
	For customer-friendly configuration and commissioning of the controllers, Siemens provides an application that can be conveniently operated on all standard smartphones and tablets.
	In addition, the controllers have an IP interface, which allows integration into higher-level automation systems. A simple and extended integration of field devices or sensors from the Siemens portfolio or from third parties is made possible by the open communication interfaces.
	For maximum convenience and minimum energy consumption, HMIs or smartphone apps are available to the end-customer for operation. Thanks to the integration in Climatix IC, our customers have the opportunity to use diagnostic and remote maintenance functions.
	This documentation describes the pre-loaded HRV application in the context of the S300 ecosystem.
Highlights	Configurable controller with dedicated I/O mix
	Pre-engineered and tested ventilation application
	Modbus RTU communication
	 BACnet / IP communication: BACnet profile ASC and KNX PL-Link bus communication for room units and sensors
	 USB interface with power supply for fast FW upgrade and compatibility with Siemens WLAN stick
	Climatix IC for remote access, monitoring and predictive maintenance
	Commissioning app for installers
	End-user app for operation

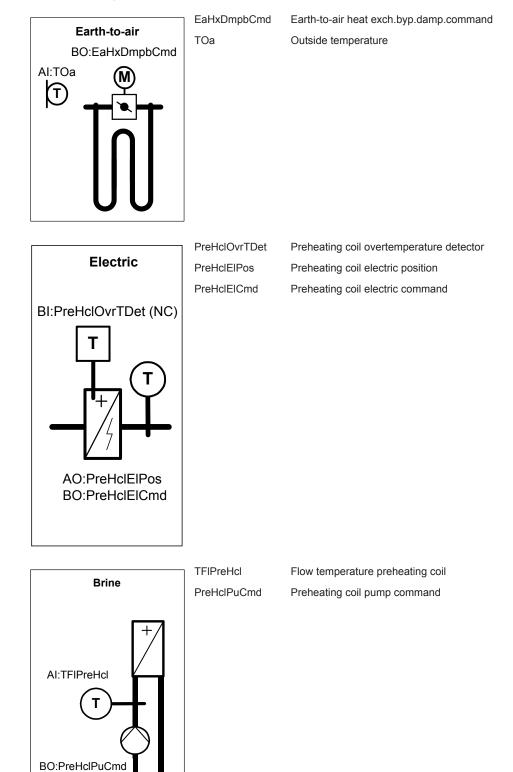
• I/O extension board with pressure sensors


3.1 System overview - Topology

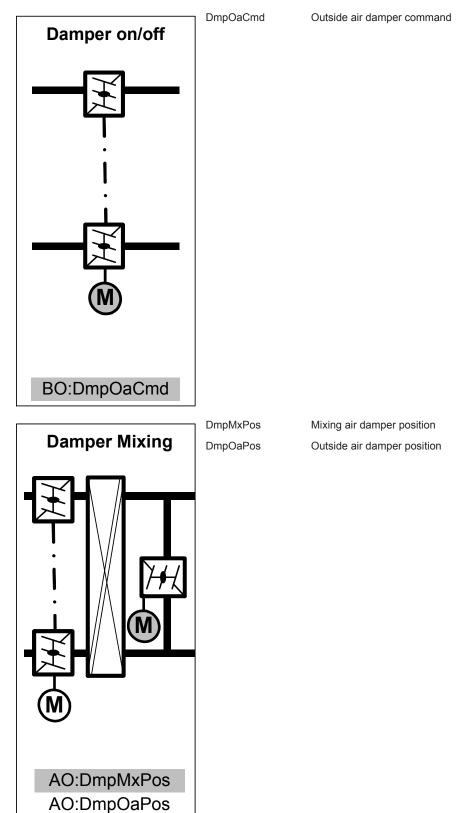
A selection of interfaces allows the controller to be connected to various configuration, operating and monitoring options.

Service organization	Production management
Remote monitoring and diagnostics via connection to the Climatix IC cloud.	Monitoring via BACnet or Modbus connection.
End user	Building management
Autonomous operation of the heat recovery ventilation system via End User app.	Monitoring via BACnet or Modbus connection.
Installer	Room operator unit and sensors
Installation and configuration via WLAN stick and ABT Go app.	Configurable via PL-Link.

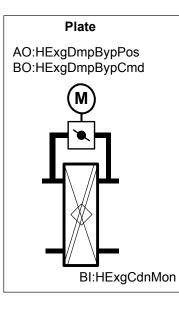
Communication in detail


3.2 Schematic plant diagram

Schematic plant diagram

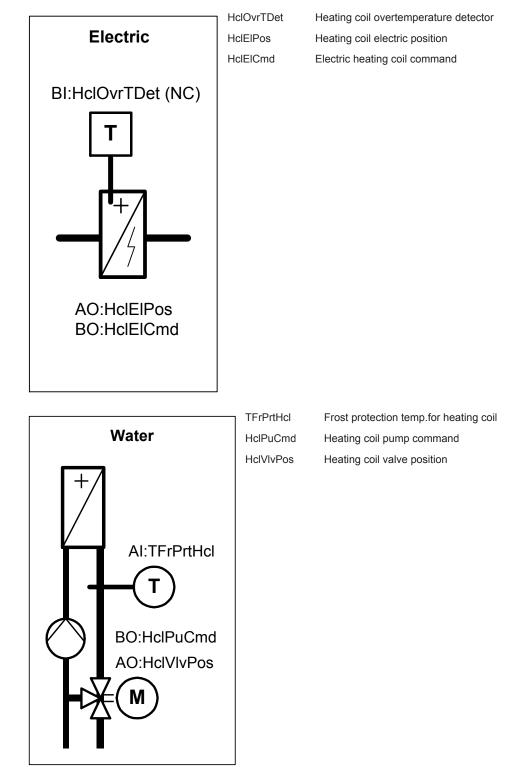

AqualEx	Extract air quality
AQualR	Room air quality
DiffPFanEh	Differential pressure exhaust air fan
DiffPFanSu	Differential pressure supply air fan
DmpOaCmd	Outside air damper command
FanEhSpd	Exhaust air fan speed
FanEhSpdFb	Exhaust air fan speed feedback
FanSuSpd	Supply air fan speed
FanSuSpdFb	Supply air fan speed feedback
FdpCmd	Fire damper command
FdpFb	Fire damper feedback
FilAirDiffPMon	Air filter differential pressure monitor
HExgDiffPMon	Heat exchanger diff. pressure monitor
HuRelEx	Relative humidity for extract air
HuRelR	Relative humidity for room
PEx	Extract air pressure
PmR	Particulate matter in room
PSu	Supply air pressure
TEx	Extract air temperature
TEh	Exhaust air temperature
ТОа	Outside temperature
TR	Room temperature
TSu	Supply air temperature
TSuAfHExg	Supply air temp. after heat exchanger
TSuAfPreHcl	Supply air temp. after preheating coil

6


3.2.1 Preheating (PreHcl)

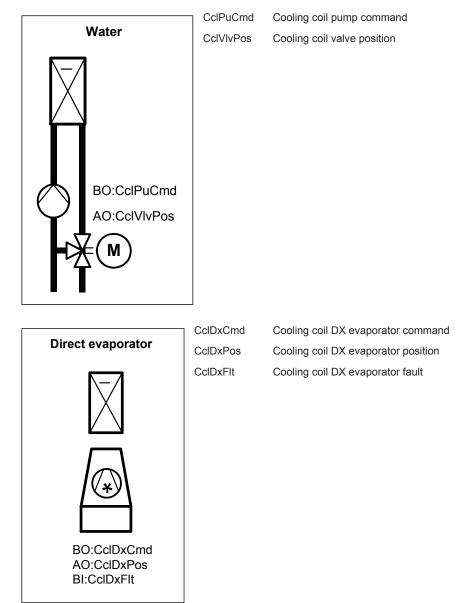
3.2.2 Dampers (Dmp)

3.2.3 Energy recovery (Erc)



HExgDmpBypPos	Heat exchanger bypass damper position
HExgDmpBypCmd	Heat exchanger bypass damper command
HExgCdnMon	Heat exchanger condensation monitor
HExgDiffPMon	Heat exchanger diff.pressure monitor

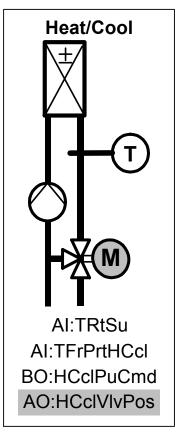
Rotary
BO:HExgDmpBypCmd
(M)
AO:RotHExgSpd
BI:RotHExgFlt


Heat exchanger bypass damper command
Rotary heat exchanger speed
Rotary heat exchanger fault

3.2.4 Heating (Hcl)

3

3.2.5 Cooling (Ccl)



3.2.6 Combined heating / cooling coil (HCcl)

TRtSu

TFrPrtHCcl

HCclPuCmd HCclVlvPos

Return temperature heating / cooling supply
Frost protection temperature heating / cooling coil
Heating / cooling coil pump command
Heating / cooling coil valve position

3

	•	•		
its	CmfOpModRIn	Input room operating mode comfort		
	EcoOpModRIn	Input room operating mode economy		
	UcdOpModRIn	Input room operating mode unoccupied		
	PrtOpModRIn	Input room operating mode protection		
	KtchVntln	Kitchen hood ventilation input		
	FplcVntln	Fireplace ventilation input		
	RpdVntln	Rapid ventilation input value		
EmgOff Smext		Emergency off		
		Smoke extraction		
USBPowerIn U		USB power input		
puts				
puts	CmnAimIndOut	Common alarm indication output		
	AalmIndOut	A-Alarm indication output		
	BalmIndOut	B-Alarm indication output		
	OpIndOut	Operation indication output		
	DhumFrsdCmd	Dehumidifier free-standing command		

3.2.7 Control inputs / outputs

BI: control inputs

BO: control outputs

4 Configuration

The configuration of the application can be executed in the configuration mode of the ABT Go app. or in the configuration part of ABT Site.

4.1 Wireless connection with POL903

The WLAN USB stick dongle POL903 offers wireless access to the controller, for example, via ABT Go.

The WLAN dongle can only be used temporarily since it is not been designed to be used 24/7. Use the Ethernet port for a permanent wireless connection.

TIP: In those cases where the WLAN dongle is always plugged in the controller, switch off USB power via BACnet, Modbus or Onboard input.

Available parameters

Actual values	BACnet object	R/RW	Note
USB supply power switch	USBPowerIn BI,148 (D1) BI,149 (D2)	R	Push button
IP address	NwkPortIP	RW	
Basic settings	BACnet object	R/RW	Note
USB supply power setting	USBPower BVAL, 352	RW	

Initial configuration

- 1. Connect POL903 with POS3.5715 device on the USB port.
- 2. Power on POS3.5715 device
- 3. The WLAN signal is available after 5 minutes (phone or PC).
- 4. The default WLAN name is *Siemens-WLAN-Stick* and default password is *SIBPAdmin*
- 5. The address for the WLAN Stick configuration is https://10.123.45.1:441
- 6. After connecting the WLAN, change the password and remember it.

Note: Click "Save" when making changes to "Settings" page, and then "Apply & Restart".

Restart the POL903 for the configuration to take effect.

			Access Po	nt	
Ŧ	Access Point			Changes will take offer	t after reset 🛞 📿
	innel			name (SSID)	
1			Siemens-WPi-Stick		
Sec	urity Mode		SSID Mo	ia	•
0	Password				~
	IP & DHCP				~
		Cr	nneched de	vices	
1	10.123.45.5	10.08 A9:D5.2	9.F0	DESKTOP-PMG17NS	
2	•				
3					
4					

4.2 ABT Go configuration

The concept for the configuration of the controller is split into 2 parts:

Basic configuration: choosing the functions

Select the desired control functions for the heat recovery ventilation system.

The applications depend on the installed devices and intended use.

Extended configuration: configuring the hardware

Set the required input and output signals at the desired terminals according to the application choices made in the first step. This includes the controller as well as peripheral devices.

Setting and changing control parameters is possible with the system running.

i

i

During basic and extended configuration, the controller will stop the application. When leaving the configuration mode, the device will restart.

To access the BACnet registers that are listed in this document, a BACnet explorer can be used.

To set up the communication to the controller, the Ethernet port can be used.

Note the following facts:

- Application choice and hardware configuration are completely independent.
- There is no automatism that selects input/output signals according to application choices or that activates application functions depending on hardware settings.
- The controller provides a limited check, reporting configuration error if any mandatory input or output selections are missing.
- Input and output signal that are optional are not checked.

4.2.1 Accessing the device

In this example, the S300 HRV controller is accessed via connected WLAN router and ABT Go.

Other connection types and configuration tool are possible.

- ▷ A WLAN router is connected to the S300 HRV controller.
- ▷ ABT Go is installed on your mobile device.
- 1. In the WLAN settings of you mobile device, connect to the router that is connected to the controller.
- 2. Open the app ABT Go.
- 3. Navigate to the menu "Connection".
- 4. Choose "Network" and push the button "Connect".
 - ⇒ The controller is listed with some basic documentation.
- 5. Select your listed controller.
 - ⇒ The login dialog opens.
- 6. Fill in username and password of the S300 HRV controller.
- ⇒ Now you can navigate to the desired menus.

The default user name the first time you connect to ABT Go is: Administrator The default password is: OneBT

Once the Siemens default password has been entered, a new password has to be defined. This password has to comply with the following rules:

- At least 8 characters.
- 3 out of 4 of the following conditions must be satisfied:
 - At least one uppercase alphabetic character.
 - At least one lowercase alphabetic character.
 - At least one digit.
 - At least one non-alphabetic character.

4.2.2 Basic configuration

To change the device configuration online in ABT Go:

- Go to Device > Configuration > Online configuration basic NOTICE: Entering the Configuration mode stops the application! Cancel aborts without changes.
- 2. Tap OK.
 - The device is set to the Configuration mode.
 NOTE: If you want to leave this mode without having any changes applied, you have to manually set the setpoints back.
- **3.** Select your choices and modify the values according the requirements of the customer plant.

4. Tap Apply - Restart application.

- ⇒ The device restarts and processes the new configuration.
- ⇒ After a successful restart the device state is set to Operational.
- ➡ The settings of the choices are applied, data points and parameters are set accordingly.

4.2.3 Extended configuration

To change the device configuration online in ABT Go:

- Go to Device > Configuration > Online configuration extended NOTICE: Entering the Configuration mode stops the application! Cancel aborts without changes.
- 2. Tap OK.
 - The device is set to the Configuration mode.
 NOTE: If you want to leave this mode without having any changes applied, you have to manually set the setpoints back.
- **3.** Select your choices and modify the values according the requirements of the customer plant.
- 4. Tap Apply Restart application.
 - ⇒ The device restarts and processes the new configuration.
 - After a successful restart the device state is set to Operational.
- ⇒ The settings of the choices are applied, data points and parameters are set accordingly.

4.3 Choosing the functions

Refer to the list below to set the functions of the application accordingly. Some of the functions may require certain hardware (peripheral devices).

Control functions

Control function	BACnet object	Selection	Note	
Ventilation control	STR_VIEW, 402	Ventilation control 21y, air volume flow	Controls the measured air flow to values depending on the operating mode and air quality	
		Ventilation control 22y, air duct pressure	Controls supply and extract air duct pressure to values depending on the operating mode and air quality	
		Ventilation control 23y, fan speed	Controls supply and extract fan speed to values depending on the operating mode and air quality (default)	
Temperature control	STR_VIEW, 103	Supply air temperature control 21y	Controls supply air temperature to a value depending on the outside air temperature modulating the available actuators (default)	
		Temperature cascade control 21y	Controls room or extract air temperature to a value depending on the outside air temperature modulating the supply air temperature setpoint	
Kitchen hood	STR_VIEW, 168	None	No kitchen extract fan available (default)	
ventilation operation		Active	Kitchen extract fan available (default)	
Fireplace	STR_VIEW, 112	None	No open fireplace available	
ventilation operation		Active	Open fireplace available (default)	
Dehumidification	STR_VIEW, 115	None	No humidity control available (default)	
control		Active	Dehumidification control via fan speed and / or stand- alone dehumidifier	
Particulate matter	STR_VIEW, 324	None	No particulate matter control available (default)	
control		Active	Particulate matter control available	
Air quality control	STR_VIEW, 352	None	No air quality control available (default)	
		Active	Air quality control available	
Room air humidity	STR_VIEW, 539	None	No evaluation of the humidity (default)	
evaluation		Active	Room humidity is evaluated from the temperatures before and after the heat exchanger; no sensor is required. This option automatically sets the option 'Dehumidification control'.	

Plant components

Plant component	BACnet object	Selection	Note	
Preheating coil	STR_VIEW, 122	None	No preheating device available (default)	
		Electric preheating coil 21y	Electric preheating coil available (default)	
		Brine preheating coil 21y	Preheating coil using energy from the surrounding earth via brine	
		Earth to air heat exchanger 21y	Heat exchanger using energy from the surrounding earth directly	
Outside air damper	STR_VIEW,127	None	No outside air damper available	
		Shutoff damper outside air 21y	Shutoff damper for outside air (default)	
		Mixing air damper 21y	Controlled outside and mixing air dampers	
Energy recovery	STR_VIEW,130	Rotating heat exchanger 21y	Heat recovery wheel	
		Passive heat exchanger 21y, with bypass damper	Passive heat exchanger with on/off or modulating contr (default)	
		Passive heat exchanger 22y, without bypass damper	Passive heat exchanger without control	
Heating coil	STR_VIEW,138	None	No heating coil available (default)	
		Electric heating coil 21y	Electric heating coil, modulating	
		Hot water heating coil 21y	Hot water heating coil, modulating with frost protection	
Cooling coil	STR_VIEW,142	None	No cooling coil available (default)	
		Chilled water cooling coil 21y	Cooling coil, modulating, with chilled water from external source	
		DX evaporator cooling coil 21y	Cooling device with direct evaporator, modulating or on/off control	
Combined coil	STR_VIEW,530	None	No combined coil available (default)	
		Active	Combined heat/cool coil, modulating	
Fire damper	STR_VIEW,146	None	No motorized fire damper available (default)	
		Fire damper 11y	Motorized fire damper incl. test function	
Dehumidifier free-	STR_VIEW,277	None	No dehumidifier available (default)	
standing		Active	Stand-alone humidifier	

4.4 Selecting the device connections

Peripheral devices as well as room operating units and additional room sensors must be activated (set to "Active") in the basic configuration before they can be used in the application. As soon as a device is set to active, it can be connected and further configured.

Activated KNX / PL-Link devices must be connected before powering the controller, otherwise the device will not be recognized.

Modbus devices can be connected any time before power up or during run time. Because of auto-connect and KNX power supply the number of room operator unit and room sensors is limited, see "PL-Link [\rightarrow 161]".

4.4.1 Peripheral devices

•

Available devices

- POS9.1515/100 Modbus input/output extension module with 2 pressure sensors, 2 inputs, 2 outputs.
 - 2 x QBM97 Modbus (duct) air pressure sensors with 2 pressure sensors, 2 inputs, 2 outputs each.

Peripheral devices	BACnet object	Selection	Note	
Selection for I/O extension	Pos9Sel,	None (default)	No device	
device POS9 STR_VIEW, 341		Active	Modbus device POS9 connected. (communication is monitored)	
Selection for duct pressure	Qbm97Sel1, STR_VIEW, 344	None (default)	No device	
device QBM97 #1		Active	Modbus device QBM97 connected. (communication is monitored)	
Selection for duct pressure	Qbm97Sel2, STR_VIEW, 413	None (default)	No device	
device QBM97 #2		Active	Modbus device QBM97 connected.	
			(communication is monitored)	
Selection for EBM Papst modbus fans	MdbsFanSel, STR_VIEW, 469	None (default)	No device	
		Active	Modbus device Supply and exhaust air fans connected	
			(communication is monitored)	

Activating the devices

i

If the communication with the device can't be established or gets lost, individual alarm is triggered.

4.4.2 Room operating unit / Monitoring devices POS8

Available devices

One device of type POS8.4420 (room temperature) or POS8.4440 (room temperature and humidity) can be connected to controller board using KNX / PL-Link.

Activating the device

Room operator unit	BACnet object	Selection	Note
Selection for room	ROpUnSel, STR_VIEW, 403	None	No operator unit
operator unit POS8		POS8.4420 (default)	PL-Link room operator unit POS8.4420 connected.
		POS8.4440	PL-Link room operator unit POS8.4440 connected.

Available parameters

Actual value	BACnet object	Device
Room temperature	TR, AI,99	POS8.4420
Room temperature	TR, AI,120	POS8.4440
Relative humidity for room	HuRelR, AI,119	

i	NOTICE	
	Alarm in case of communication error	
	The communication with the room operator unit is monitored. If the communication can't be established or gets lost, a collective B-Alarm is triggered: "3101: Room sensor, KNX PL-Link communication error".	

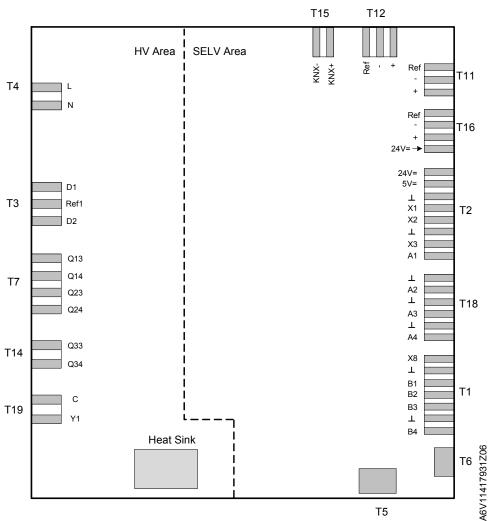
4.4.3 QMX room sensors

Available devices

One device of each type of QMX3 can be connected to the controller board using KNX / PL-Link.

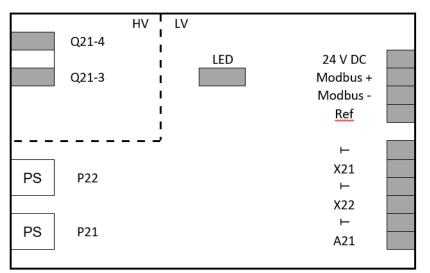
- QMX3.P30 with a room temperature sensor
- QMX3.P40 with room temperature and room humidity sensor
- QMX3.P70 with room temperature, room humidity and room air quality sensor

Activating the devices **BACnet object** Selection Room sensors Selection for room sensor Qmx3p30Sel, None / Active QMX3.P30 STR_VIEW, 196 Selection for room sensor Qmx3p40Sel, None / Active QMX3.P40 STR_VIEW, 220 Selection for room sensor Qmx3p70Sel, None /Active QMX3.P70 STR_VIEW, 222


i	NOTICE
	Alarm in case of communication error
	If a communication with the room sensor can't be established or gets lost, a collective B-Alarm is triggered: "3101: Room sensor, KNX PL-Link communication error".

4.5 Configuring the hardware

The I/Os on the controller board and peripheral devices do not have a designated function. Only for the controller board, the I/Os for default functions are set (see "Default configuration [\rightarrow 49]").


Depending on the application and the functions selected in Basic configuration, the required I/O signals must be set at the desired terminals.

Controller board

Controller board				
4 x analog inputs (resistor)		3 x digital outputs (relay)	3 x digital outputs (relay)	
2 x digital inputs		4 x analog outputs		
4 x multi-type inputs		1 x digital output (triac)		
Interface	Туре		Note	
B1, B2, B3, B4	Analog Input 1) Resistor NTC10k	5 T		
X1, X2	, ,	Analog Input 1) Measuring 010V 2) Tacho pulse (max. 300Hz)		
X3	1) Measuring 010V	Analog / Digital (Binary) Input 1) Measuring 010V 2) Potential free contact (NO or NC)		
A1, A2, A3, A4	Analog Output 1) Signal 010V	S .		
X8	1) Resistor NTC10k	Analog / Digital (Binary) Input 1) Resistor NTC10k 2) Potential free contact (NO or NC)		
D1, D2	Digital (Binary) Input 1) Potential free cont	Digital (Binary) Input 1) Potential free contact (NO or NC)		
Q1, Q2, Q3		Relay (Binary) Output 1) Potential free contact (NO)		
Y1	1) Signal On/Off	Digital (Binary) / Analog Output Triac VAC 1) Signal On/Off 2) Signal PWM (constant period)		

Extension module

Extension module	e (POS9)			
2 x analog inputs (pressure)		1 x digital output (re	1 x digital output (relay)	
1 x analog input (resistor)		1 x analog output	1 x analog output	
1 x analog input				
Interface	Туре	Туре		
P21, P22	Differential pressu	Differential pressure input		
X21	Analog Input 1) Resistor NTC1	Analog Input 1) Resistor NTC10k		
X22	Analog Input 1) Measuring 0	Analog Input 1) Measuring 010V		
A21	Analog Output 1) Signal 0…10V			
Q21	Relay (Binary) Ou 1) Potential free c	•	BO	

i

In- and output settings are always visible in "Extended configuration" even if the device is not activated.

36 | 188

Air pressure sensor

Air pressure sensor (QBM97) 2 x analog inputs (pressure) 1 x analog input (resistor) 1 x analog input		2 x analog outputs	
Interface	Туре		Note
P1, P2	Air pressure input		-
Al1	Analog Input 1) Resistor NTC10k		AI
AI2	Analog Input 1) Measuring 010V		AI
AO1,AO2	Analog Output 1) Signal 010V		AO

In- and output settings are always visible in "Extended configuration" even if the device is not activated.

4.5.1 Input settings

4.5.1.1 Controller board

The following functions can be selected for input signals on the controller board:

Parameter	BACnet object					
Selection for B1	B1Sel, STR_VIEW,41					
Selection for B2	B2Sel, STR_VIEW,43					
Selection for B3	B3Sel, STR_VIEW,45					
Selection for B4	B4Sel, STR_VIEW,47					
Selection	BACnet object	R/W	Signal type	Range		
None						
Supply air temperature	TSu	R	NTC10k	-5080 °C		
Outside air temperature	Тоа	R	NTC10k	-5050 °C		
Extract air temperature	TEx	R	NTC10k	-5080 °C		
Exhaust air temperature	TEh	R	NTC10	-5080 °C		
Supply air temperature after heat exchanger	TSuAfHExg	R	NTC10k	-5080 °C		
Supply air temperature after preheating coil	TSuAfPreHcl	R	NTC10k	-5080 °C		
Flow temperature preheating coil	TFIPreHcl	R	NTC10k	-5080 °C		
Frost protection temperature for heating coil	TFrPrtHcl	R	NTC10k	-5080 °C		
Frost protection temperature for combined coil	TFrPrtHCcl	R	NTC10k	-5080 °C		
Primary chilled water temperature	TChwPm	R	NTC10k	-5080 °C		
Parameter	BACnet object					
Selection for X1	X1Sel, STR_VIEW,53					
Selection	BACnet object	R/W	Signal type	Range		
None	-	-	-			
Supply air fan speed feedback pulse	FanSuSpdFb	R	0300Hz	0100 %		
Supply air fan speed feedback voltage	FanSuSpdFb	R	010V	0100 %		
Extract air quality	AQualEx	R	010V	02000 ppm		
Relative humidity for extract air	HuRelEx	R	010V	0100 %		
Particulate matter in room	PmR	R	010V	0500 µg/m3		

Input B1, B2, B3, B4

Input X1

Input X2

Input X3

Parameter	BACnet object						
Selection for X2	X2Sel, STR_VIEW,55						
Selection	BACnet object	R/W	Signal type	Range			
None	-	-	-				
Exhaust air fan speed feedback pulse	FanEhSpdFb	R	0300Hz	0100 %			
Exhaust air fan speed feedback voltage	FanEhSpdFb	R	010V	0100 %			
Extract air quality	AQualEx	R	010V	02000 ppm			
Relative humidity for extract air	HuRelEx	R	010V	0100 %			
Particulate matter in room	PmR	R	010V	0500 µg/m3			
Parameter	BACnet object						
Selection for X3	X3Sel, STR_VIEW,57						
Selection	BACnet object	R/W	Signal type	Note			
None	-	-	-				
Extract air quality	AQualEx	R	010V	02000 ppm			
Relative humidity for extract air	HuRelEx	R	010V	0100 %			
Particulate matter in room	PmR	R	010V	0500 µg/m3			
Rapid ventilation input	RpdVntIn	R	Contact	NO			
Kitchen hood ventilation input	KtchVntIn	R	Contact	NO			
Fireplace ventilation input	FplcVntIn	R	Contact	NO			
Air filter differential pressure monitor	FilAirDiffPMon	R	Contact	NO			
Fire damper feedback	FdpFb	R	Contact	NO			
Preheating coil overtemperature detector	PreHclOvrTDet	R	Contact	NC			
Heat exchanger condensation monitor	HExgCdnMon	R	Contact	NO			
Rotary heat exchanger fault	RotHExgFlt	R	Contact	NO			
Heat exchanger differential pressure monitor	HExgDiffPMon	R	Contact	NO			
Heating coil overtemperature detector	HclOvrTDet	R	Contact	NC			
Cooling coil DX evaporator fault	CcIDxFlt	R	Contact	NO			
Emergency off	EmgOff	R	Contact	NC			
Smoke extraction	Smext	R	Contact	NO			
Input room operating mode comfort	CmfOpModRIn	R	Contact	NO			
Input room operating mode economy	EcoOpModRIn	R	Contact	NO			
Input room operating mode unoccupied	UcdOpModRin	R	Contact	NO			
Input room operating mode protection	PrtOpModRIn	R	Contact	NO			
Combined coil cooling indication input	HCclCStaIn	R	Contact	NO			

Input X8

Parameter	BACnet object						
Selection for X8	X8Sel, STR_VIEW,59						
Selection	BACnet object	R/W	Signal type	Range			
None	-	-	-				
Extract air temperature	TEx	R	NTC10k	-5080 °C			
Exhaust air temperature	TEh	R	NTC10k	-5080 °C			
Supply air temperature after heat exchanger	TSuAfHExg	R	NTC10k	-5080 °C			
Supply air temperature after preheating coil	TSuAfPreHcl	R	NTC10k	-5080 °C			
Flow temperature preheating coil	TFIPreHcl	R	NTC10k	-5080 °C			
Frost protection temperature for heating coil	TFrPrtHcl	R	NTC10k	-5080 °C			
Primary chilled water temperature	TChwPm	R	NTC10k	-5080 °C			
Frost protection temperature for combined coil	TFrPrtHCcl	R	NTC10k	-5080 °C			
Rapid ventilation input	RpdVntIn	R	Contact	NO			
Kitchen hood ventilation input	KtchVntIn	R	Contact	NO			
Fireplace ventilation input	FplcVntIn	R	Contact	NO			
Air filter differential pressure monitor	FilAirDiffPMon	R	Contact	NO			
Fire damper feedback	FdpFb	R	Contact	NO			
Preheating coil overtemperature detector	PreHclOvrTDet	R	Contact	NC			
Heat exchanger condensation monitor	HExgCdnMon	R	Contact	NO			
Rotary heat exchanger fault	RotHExgFlt	R	Contact	NO			
Heat exchanger differential pressure monitor	HExgDiffPMon	R	Contact	NO			
Heating coil overtemperature detector	HclOvrTDet	R	Contact	NC			
Cooling coil DX evaporator fault	CclDxFlt	R	Contact	NO			
Emergency off	EmgOff	R	Contact	NC			
Smoke extraction	Smext	R	Contact	NO			
Input room operating mode comfort	CmfOpModRIn	R	Contact	NO			
Input room operating mode economy	EcoOpModRIn	R	Contact	NO			
Input room operating mode unoccupied	UcdOpModRin	R	Contact	NO			
Input room operating mode protection	PrtOpModRIn	R	Contact	NO			
Combined coil cooling indication input	HCclCStaln	R	Contact	NO			

Input D1, D2

Parameter	BACnet object						
Selection for D1	D1Sel, STR_VIEW,49						
Selection for D2	D2Sel, STR_VIEW,51						
Selection	BACnet object	R/W	Signal type	Range			
None	-	-	-				
Rapid ventilation input	RpdVntIn	R	Contact	NO			
Kitchen hood ventilation input	KtchVntIn	R	Contact	NO			
Fireplace ventilation input	FplcVntIn	R	Contact	NO			
Air filter differential pressure monitor	FilAirDiffPMon	R	Contact	NC / NO			
Fire damper feedback	FdpFb	R	Contact	NC / NO			
Preheating coil overtemperature detector	PreHclOvrTDet	R	Contact	NC / NO			
Heat exchanger condensation monitor	HExgCdnMon	R	Contact	NC / NO			
Rotary heat exchanger fault	RotHExgFlt	R	Contact	NC / NO			
Heat exchanger differential pressure monitor	HExgDiffPMon	R	Contact	NC / NO			
Heating coil overtemperature detector	HclOvrTDet	R	Contact	NC / NO			
Cooling coil DX evaporator fault	CclDxFlt	R	Contact	NC / NO			
Emergency off	EmgOff	R	Contact	NC / NO			
Smoke extraction	Smext	R	Contact	NC / NO			
Input room operating mode comfort	CmfOpModRIn	R	Contact	NO			
Input room operating mode economy	EcoOpModRIn	R	Contact	NO			
Input room operating mode unoccupied	UcdOpModRin	R	Contact	NO			
Input room operating mode protection	PrtOpModRIn	R	Contact	NO			
USB power switch input	USBPowerIn	R	Contact	NO			
Combined coil cooling indication input	HCclCStaIn	R	Contact	NO			
Supply air fan fault	FanSuFlt	R	Contact	NC / NO			
Exhaust air fan fault	FanEhFlt	R	Contact	NC / NO			

4.5.1.2 Extension module

The following functions can be selected for pressure sensors and input signals on the I/O extension module POS9.

			le 1 009	•			
Input P21	Paramet	ter			BACnet object		
	n for P21	for P21			P21Sel, STR_VIEW,73		
Selection		BACnet object	R/W	Sign	al type	Range	
None		-	-	-			
Differential pressure supply air fan		DiffPFanSu	R	Integ	rated sensor	03000 Pa	
Supply air pressure		PSu	R	Integ	rated sensor	-30003000 Pa	
Input P22	Paramet	ter			BACnet object	t	
	Selectior	n for P22			P22Sel, STR_VIEW,74		
Selection		BACnet object	R/W	Sign	al type	Range	
None		-	-	-			
Differential pressure exhaust air fa	n	DiffPFanEh	R	Integ	rated sensor	03000 Pa	
Extract air pressure		PEx	R	Integ	rated sensor	-30003000 Pa	
Input X21	Paramet	ter			BACnet object	t	
	Selectior	n for X21	X21Sel, STR_VIEW,181			1	
Selection		BACnet object	R/W	Sign	al type	Range	
None		-	-	-			
Extract air temperature		TEx	R	NTC	10k	-5080 °C	
Exhaust air temperature		TEh	R	NTC	10k	-5080 °C	
Supply air temperature after heat e	exchanger	TSuAfHExg	R	NTC	10k	-5080 °C	
Supply air temperature after prehea	ating coil	TSuAfPreHcl	R	NTC	10k	-5080 °C	
Flow temperature preheating coil		TFIPreHcl	R	NTC	10k	-5080 °C	
Frost protection temperature for he	eating coil	TFrPrtHcl	R	NTC	NTC10k -5080 °C		
Input X22	Paramet	ter			BACnet object		
	Selectior	ction for X22 X22Sel, STR_VIEW			X22Sel, STR_VIEW,183		
Selection		BACnet object	R/W	Sign	al type	Range	
None		-	-	-			
Extract air quality		AQualEx	R	01	0V	02000 ppm	
Relative humidity for extract air		HuRelEx	R	01	0V	0100 %	

R

0...10V

PmR

0...500 µg/m3

Particulate matter in room

4.5.1.3 Air pressure sensors

Parameter

Parameter

Selection

None

fan

fan

Selection for P2

Differential pressure exhaust air

Differential pressure exhaust air

Diff. press. exhaust air filter

Supply air pressure

Extract air pressure

Diff. press. supply air filter

The following functions can be selected for pressure sensors and input signals on the air pressure sensors QBM97 # 1 and /or #2.

BACnet object

Input P1

Selection for P1	P1Sel, QBM97#1: STR_VIEW,329 QBM97#1: STR_VIEW,424						
Selection	BACnet object	R/W	Signal type	Range			
None	-	-	-				
Differential pressure supply air fan	DiffPFanSu	R	Integrated sensor	03000 Pa			
Supply air pressure	PSu	R	Integrated sensor	-30003000 Pa			
Diff. press. supply air filter	DiffPFilSu	R	Integrated sensor	-30003000 Pa			
Differential pressure exhaust air fan	DiffPFanEh	R	Integrated sensor	03000 Pa			
Extract air pressure	PEx	R	Integrated sensor	-30003000 Pa			
Diff. press. exhaust air filter	DiffPFilEh	R	Integrated sensor	-30003000 Pa			

BACnet object

BACnet object

DiffPFanSu

DiffPFilSu

DiffPFanEh

DiffPFilEh

PSu

PEx

QBM97#1: STR_VIEW,331 QBM97#1: STR_VIEW,426

R/W

R

R

R

R

R

R

Signal type

Integrated

Integrated

Integrated

Integrated

Integrated

Integrated sensor

sensor

sensor

sensor

sensor

sensor

Range

0...3000 Pa

-3000...3000 Pa

-3000...3000 Pa

-3000...3000 Pa

-3000...3000 Pa

0...3000 Pa

P2Sel,

Input P2

A6V10733786	en	d	

Parameter

Input AI1

Selection for AI1	AI1Sel, QBM97#1: STR_VIEW,333 QBM97#1: STR_VIEW,429						
Selection	BACnet object	R/W	Signal type	Range			
None	-	-	-				
Outside air temperature	ТОа	R	NTC10k	-5050 °C			
Extract air temperature	TEx	R	NTC10k	-5080 °C			
Exhaust air temperature	TEh	R	NTC10k	-5080 °C			
Supply air temperature after heat exchanger	TSuAfHExg	-5080 °C					
Supply air temperature after preheating coil	TSuAfPreHcl	R	NTC10k	-5080 °C			
Flow temperature preheating coil	TFIPreHcl	R	NTC10k	-5080 °C			
Frost protection temperature for heating coil	TFrPrtHcl	R	NTC10k	-5080 °C			
Parameter	BACnet object						
Selection for AI2	Al2Sel, QBM97#1: STR_V QBM97#1: STR_V	,					
Selection	BACnet object	R/W	Signal type	Range			
None	-	-	-				
Extract air quality	AQualEx	R	010V	02000 ppm			
Relative humidity for extract air	HuRelEx	R	010V	0100 %			
Particulate matter in room	PmR	R	010V	0500 µg/m3			

BACnet object

Input AI2

4.5.2 Output settings

4.5.2.1 Controller board

The following functions can be selected for output signals on the controller board: Outputs Q1, Q2, Q3

Parameter	BACnet object			
Selection for Q1	Q1Sel, STR VIEW,61			
Selection for Q2	Q2Sel, STR_VIEW,62			
Selection for Q3	Q3Sel, STR_VIEW,63			
Selection	BACnet object	R/W	Signal type	Range
None	-	-	-	
Outside air damper command	DmpOaCmd	R/W	Relay	NO
Fire damper command	FdpCmd	R/W	Relay	NO
Preheating coil electric command	PreHclElCmd	R/W	Relay	NO
Preheating coil pump command	PreHclPuCmd	R/W	Relay	NO
Earth-to-air heat exchanger bypass damper command	EaHxDmpbCmd	R/W	Relay	NO
Heat exchanger bypass damper command	HExgDmpBypCmd	R/W	Relay	NO
Electric heating coil command	HclElCmd	R/W	Relay	NO
Heating coil pump command	HclPuCmd	R/W	Relay	NO
Cooling coil pump command	CclPuCmd	R/W	Relay	NO
Cooling coil DX evaporator command	CcIDxCmd	R/W	Relay	NO
Dehumidifier free-standing command	DhumFrsdCmd	R/W	Relay	NO
A-Alarm indication output	AalmIndOut	R/W	Relay	NO
B-Alarm indication output	BalmIndOut	R/W	Relay	NO
Common alarm indication output	CmnAlmIndOut	R/W	Relay	NO
Operation indication output	OpIndOut	R/W	Relay	NO
Heat exchanger bypass piston damper Open*	HExgDmbCmdOp BO,104 (only on Q1)	R/W	Relay	NO
Heat exchanger bypass piston damper Close*	HExgDmpbCmdCls BO,105 (only on Q2)	R/W	Relay	NO
Combined coil pump command	HCclPuCmd	R/W	Relay	NO

i

*Heat exchanger bypass piston damper Open / Close are co-dependent and cannot be selected separately. For further details refer to chapter Passive Heat Exchanger, controlled (PltHExg21y) [→ 108].

Outputs A1, A2, A3, A4

Parameter	BACnet object					
Selection for A1	A1Sel, STR_VIEW,2	264				
Selection for A2	A2Sel, STR_VIEW,2	266				
Selection for A3	A3Sel, STR_VIEW,268					
Selection for A4	A4Sel, STR_VIEW,270					
Selection	BACnet object R/W Signal type Range					
None	-	-	-			
Supply air fan speed	FanSuSpd	R/W	010V	0100 %		
Exhaust air fan speed	FanEhSpd	R/W	010V	0100 %		
Preheating coil electric position	PreHclElPos	R/W	010V	0100 %		
Heat exchanger bypass damper position	HExgDmpBypPos	R/W	010V	0100 %		
Rotary heat exchanger speed	RotHExgSpd	R/W	010V	0100 %		
Heating coil electric position	HclElPos	R/W	010V	0100 %		
Heating coil valve position	HclVlvPos	R/W	010V	0100 %		
Cooling coil valve position	CclVlvPos	R/W	010V	0100 %		
Cooling coil DX evaporator position	CcIDxPos	R/W	010V	0100 %		
Recirculating air damper position	DmpMxPos	R/W	010V	0100 %		
Outside air damper position	DmpOaPos	R/W	010V	0100 %		
Combined coil valve position	HCclVlvPos	R/W	010V	0100 %		
Parameter	BACnet object					
Selection for Y1	Y1Sel, STR_VIEW,6	8				
Selection	BACnet object	R/W	Signal type	Range		
None	-	-	-			
Preheating coil electric position	PreHclElPos	R/W	PWM Triac (pulse period 10s)	0100 %		
Heating coil electric position	HclEIPos	R/W	PWM Triac (pulse period 10s)	0100 %		

AalmIndOut

BalmIndOut

OpIndOut

CmnAlmIndOut

Output Y1

A-Alarm indication output

B-Alarm indication output

Operation indication output

Common alarm indication output

A6V10733786_en_d

R/W

R/W

R/W

R/W

DO Triac

DO Triac

DO Triac

DO Triac

NO

NO

NO

NO

4.5.2.2 Extension module

The following functions can be selected for output signals on the extension module POS9:

Output Q21

Parameter	BACnet object					
Selection for Q21	Q21Sel, STR_VIEW,	71				
Selection	BACnet object	R/W	Signal type	Range		
None	-	-	-			
Outside air damper command	DmpOaCmd	R/W	Relay	NO		
Fire damper command	FdpCmd	R/W	Relay	NO		
Preheating coil electric command	PreHclElCmd	R/W	Relay	NO		
Preheating coil pump command	PreHclPuCmd	R/W	Relay	NO		
Earth-to-air heat exchanger bypass damper command	EaHxDmpbCmd	R/W	Relay	NO		
Heat exchanger bypass damper command	HExgDmpBypCmd	R/W	Relay	NO		
Electric heating coil command	HclElCmd	R/W	Relay	NO		
Heating coil pump command	HclPuCmd	R/W	Relay	NO		
Cooling coil pump command	CclPuCmd	R/W	Relay	NO		
Cooling coil DX evaporator command	CclDxCmd	R/W	Relay	NO		
Dehumidifier free-standing command	DhumFrsdCmd	R/W	Relay	NO		
A-Alarm indication output	AalmIndOut	R/W	Relay	NO		
B-Alarm indication output	BalmIndOut	R/W	Relay	NO		
Common alarm indication output	CmnAlmIndOut	R/W	Relay	NO		
Operation indication output	OpIndOut	R/W	Relay	NO		
Parameter	BACnet object					
Selection for A21	A21Sel, STR_VIEW,2	272				
Selection	BACnet object	R/W	Signal type	Range		
None	-	-	-			
Supply air fan speed	FanSuSpd	R/W	010V	0100 %		
Exhaust air fan speed	FanEhSpd	R/W	010V	0100 %		
Preheating coil electric position	PreHclElPos	R/W	010V	0100 %		
Heat exchanger bypass damper position	HExgDmpBypPos	R/W	010V	0100 %		
Rotary heat exchanger speed	RotHExgSpd	R/W	010V	0100 %		
Heating coil electric position	HclElPos	R/W	010V	0100 %		
Heating coil valve position	HclVlvPos	R/W	010V	0100 %		
Cooling coil valve position	CclVlvPos	R/W	010V	0100 %		
Cooling coil DX evaporator position	CcIDxPos	R/W	010V	0100 %		
Recirculating air damper position	DmpMxPos	R/W	010V	0100 %		
Outside air damper position	DmpOaPos	R/W	010V	0100 %		

Output A21

4.5.2.3 Air pressure sensors

The following functions can be selected for output signals on the duct pressure sensor QBM97 #1 and / or #2.

Outputs AO1, AO2

Parameter	BACnet object				
Selection for AO1	AO1Sel, QBM97#1: STR_VIEW,337 QBM97#1: STR_VIEW,460				
Selection for AO2	AO2Sel, QBM97#1: STR_VIEW,339 QBM97#1: STR_VIEW,462				
Selection	BACnet object	R/W	Signal type	Range	
None	-	-	-		
Supply air fan speed	FanSuSpd	R/W	010V	0100 %	
Exhaust air fan speed	FanEhSpd	R/W	010V	0100 %	
Preheating coil electric position	PreHclElPos	R/W	010V	0100 %	
Heat exchanger bypass damper position	HExgDmpBypPos	R/W	010V	0100 %	
Rotary heat exchanger speed	RotHExgSpd	R/W	010V	0100 %	
Heating coil electric position	HclElPos	R/W	010V	0100 %	
Heating coil valve position	HclVlvPos	R/W	010V	0100 %	
Cooling coil valve position	CclVlvPos	R/W	010V	0100 %	
Cooling coil DX evaporator position	CcIDxPos	R/W	010V	0100 %	
Recirculating air damper position	DmpMxPos	R/W	010V	0100 %	
Outside air damper position	DmpOaPos	R/W	010V	0100 %	

4.5.3 Default configuration

The controller's I/O are preconfigured for the following applications:

- Supply and exhaust fan speed control (with feedback signal 0...10V)
- Heat exchanger (plate type) with on/off bypass
- Pre-electric heating coil (modulation control)
- Contact input for rapid ventilation (Fan boost) and unoccupied operating mode
- Common alarm output

Pin	Description	BACnet object	Signal type	Note
B1	Outside air temperature	ТОа	NTC10k	
B2	Supply air temperature	TSu	NTC10k	
В3	Exhaust air temperature	TEh	NTC10k	
B4	Extract air temperature	TEx	NTC10k	
D1	Rapid ventilation input	RpdVntIn	Contact	NO
D2	Input room operating mode unoccupied	UcdOpModRIn	Contact	NO
X1	Supply air fan speed feedback voltage	FanSuSpdFb	010V	
X2	Exhaust air fan speed feedback voltage	FanEhSpdFb	010V	
Х3	Heating coil overtemperature detector	PreHclOvrTDet	Contact	NC
X8	Supply air temperature after preheating coil	TSuAfPreHcl	NTC10k	
Q1	Heat exchanger bypass damper command	HExgDmpBypCmd	Relay	
Q2	Common alarm indication output	CmnAlmIndOut	Relay	
Q3	Outside air damper command	DmpOaCmd	Relay	
A1	Supply air fan speed	FanSuSpd	010V	
A2	Exhaust air fan speed	FanEhSpd	010V	
A3	Preheating coil electric position	PreHclElPos	010V	
A4	None	-	-	
Y1	None	-	-	

For the peripheral devices, the I/Os are not pre-configured.

4.5.4 Required I/Os

If an I/O that is required for a functionality is missing, ABT Go / ABT Site indicate this with a configuration check message.

If the required I/Os cannot be detected, ABT Go / ABT Site prompts with a message e.g. "Output required Supply air fan speed".

Check if all required I/Os for the selected functionalities are defined. Compare your defined I/Os with the list of required I/Os per functionality below.

Functionalities not mentioned in the list do not require any specific I/O.

Control Functions

Control Functions	Selection	IO required
Always required		Output for supply air fan speed (FanSuSpd)
		Output for exhaust air fan speed (FanEhSpd)
		Input for supply air temperature (TSu)
		Input for outside air temperature (TOa)
Ventilation control	Ventilation control 21y, air volume flow	Inputs for differential pressure supply air fan (DiffPFanSu) and exhaust air fan (DiffPFanEh)
	Ventilation control 22y, air duct pressure	Input for supply (PSu) or extract (PEx) air duct pressure
Temperature control	Temperature cascade control 21y	Input for extract air temperature (TEx) or POS8/QMX3 value for room temperature (TR)
Dehumidification control	Active	Input for extract air humidity (HuReIEx) or POS8/QMX3 value for room air humidity (HuReIR) or room air humidity evaluation, if no humidity sensor is available
Kitchen hood ventilation operation	Active	Input for kitchen hood ventilation (KtchVntIn)
Particulate matter control	Active	Input for particulate matter in room (PmR)
Air quality control	Active	Input for extract air quality (AQualEx) or QMX3 value for room air quality (AQualR)

Plant components

Plant Component	Selection	IO required
Preheating coil	Electric preheating coil 21y	Inputs for supply air temperature after preheating coil (TSuAfPreHcl) and preheating coil overtemperature detector (PreHclOvrT).
		Output for preheating coil electric (PreHclEIPos or PreHclEICmd)
	Brine preheating coil 21y	Input for flow temperature preheating coil (TFIPreHcl).
		Output for preheating coil pump (PreHclPuCmd)
	Earth to air heat exchanger 21y	Output for earth to air heat exchanger bypass command (EaHxDmpbCmd)
Outside air damper	Shutoff damper for outside air 21y	Output for outside air damper command (DmpOaCmd)
	Mixing air damper 21y	Output for mixing air damper position (DmpMxPos)
Energy recovery	Rotating heat exchanger 21y	Output for rotary heat exchanger speed (RotHExgSpd)
	Plate heat exchanger 21y, with bypass damper	Output for heat exchanger bypass damper (HExgDmpBypPos or HExgDmpBypCmd)
Heating coil	Electric heating coil 21y	Input for heating coil overtemperature detector (HclOvrTDet).
		Output for heating coil electric (HclEIPos or HclEICmd)
	Hot water heating coil 21y	Input for frost protection temperature for heating coil (TFrPrtHcl).
		Output for heating coil water (HclVlvPos or HclPuCmd)
Cooling coil	Chilled water cooling coil 21y	Output for cooling coil chilled water (CclVIvPos)
	DX evaporator cooling coil 21y	Output for cooling coil DX evaporator (CclDxPos or CclDxCmd)

Plant Component	Selection	IO required
Combined coil	Heat/Cool coil 21y	Output for combined coil valve position (HCclVIvPos)
Fire damper	Fire damper 21y, motorized	Input for fire damper feedback (FdpFb).
		Output for fire damper command (FdpCmd)
Dehumidifier free-standing	Active	Output for dehumidifier free-standing (DhumFrsdCmd)

Parameters

Parameter	BACnet object	Configuration check
I/O config. check for ventilation	IOCnfCkVnt, STR_VIEW, 84	Messages for ventilation related functions
I/O config. check for heat exchanger and damper	IOCnfCkHxDmp, STR_VIEW, 85	Messages for heat exchanger and damper related functions
I/O config. check for heating	IOCnfCkH, STR_VIEW, 243	Messages for heating related functions
I/O config. check for cooling	IOCnfCkC, STR_VIEW, 244	Messages for cooling related functions
I/O config. check for air quality	IOCnfCkAQual, STR_VIEW, 363	Messages for particulate matter, humidity and air quality related functions

4.6 General settings

4.6.1 Actual configuration

Found

The configuration parameters are only accessible and thus visible in controller stop mode.

However, the selected configuration is copied to information parameters - called actual configuration - that are visible in every controller state and can also be checked via ABT Go / ABT Site.

Note

Inputs/outputs or devices marked as active indicate only that the corresponding functionality or device is enabled, but not that the sensor or device is physically connected and operational.

	Favorite	BACnet object		Description	
	Actual configuration	ActlCnf, STR_VIEW	,80	Favorite structure containing the actual configuration info/objects	
Actual configurations for control functions	Control functions and HVAC components		BACnet object		
control functions	Actual configuration for ventilation control		ActIVntCtICnf, MVAL,398		
	Actual configuration for temperature control		ActITCtICnf, MVAL,393		
	Actual configuration for kitchen hood ventilation		ActlKtchVntCnf, MVAL,394		
	Actual configuration for fireplace ventilation		ActlFplcVntCnf, MVAL,395		
	Actual configuration for dehumidif	ication control	ActIDhuCtICr	nf, MVAL,396	
	Actual configuration for air quality	control	ActlAqCtlCnf	, MVAL,664	
	Actual configuration for particulate	e matter control	ActlPmCtlCn	f, MVAL,572	
	Actual configuration for outside air	r damper	ActIDmpOaC	nf, MVAL,403	
	Actual configuration for preheating	g coil	ActlPreHclCr	nf, MVAL,401	
	Actual configuration for energy recovery		ActlErcCnf, N	/IVAL,402	
	Actual configuration for heating coil		ActIHclCnf, MVAL,399		
	Actual configuration for cooling coil		ActlCclCnf, MVAL,400		
	Actual configuration for combined coil		ActIHCclCnf, MVAL,990		
	Actual configuration for fire damper		ActlFdpCnf, MVAL,404		
	Actual configuration for dehumidif	ier	ActIDhumCnf, MVAL,487		
Actual configuration for controller board	I/O		BACnet obje	ect	
	Actual configuration for B1		ActlB1Cnf, N	IVAL,351	
	Actual configuration for B2		ActlB2Cnf, MVAL,352		
	Actual configuration for B3		ActlB3Cnf, MVAL,353		
	Actual configuration for B4		ActlB4Cnf, MVAL,354		
	Actual configuration for D1		ActID1Cnf, MVAL,355		
	Actual configuration for D2		ActID2Cnf, MVAL,356		
	Actual configuration for X1		ActlX1Cnf, MVAL,357		
	Actual configuration for X2		ActlX2Cnf, MVAL,358		
	Actual configuration for X3		ActlX3Cnf, MVAL,359		
	Actual configuration for X8		ActIX8Cnf, N	IVAL,360	
	Actual configuration for Q1		ActlQ1Cnf, MVAL,365		
	Actual configuration for Q2		ActlQ2Cnf, MVAL,366		
	Actual configuration for Q3		ActlQ3Cnf, MVAL,367		
	Actual configuration for A1		ActlA1Cnf, MVAL,432		

	1/0	BACnet object
	Actual configuration for A2	ActlA2Cnf, MVAL,433
	Actual configuration for A3	ActlA3Cnf, MVAL,434
	Actual configuration for A4	ActIA4Cnf, MVAL,435
	Actual configuration for Y1	ActlY1Cnf, MVAL,372
Actual configuration for	l/Os	BACnet object
POS9 extension module	Actual configuration for P21	ActlP21Cnf, MVAL,361
modulo	Actual configuration for P22	ActlP22Cnf, MVAL,362
	Actual configuration for X21	ActlX21Cnf, MVAL,363
	Actual configuration for X22	ActlX22Cnf, MVAL,364
	Actual configuration for Q21	ActlQ21Cnf, MVAL,373
	Actual configuration for A21	ActlA21Cnf, MVAL,436
Actual configuration for	l/Os	BACnet object
QBM97 duct pressure sensor #1	Actual configuration for P1	ActlP1Cnf, MVAL,578
	Actual configuration for P2	ActlP2Cnf, MVAL,579
	Actual configuration for AI1	ActlAI1Cnf, MVAL,580
	Actual configuration for AI2	ActlAl2Cnf, MVAL,581
	Actual configuration for AO1	ActlAO1Cnf, MVAL,582
	Actual configuration for AO2	ActlAO2Cnf, MVAL,583
Actual configuration for	l/Os	BACnet object
QBM97 duct pressure sensor #2	Actual configuration for P1	ActlP1Cnf(2), MVAL,888
	Actual configuration for P2	ActlP2Cnf(2), MVAL,889
	Actual configuration for AI1	ActlAI1Cnf(2), MVAL,890
	Actual configuration for AI2	ActlAl2Cnf(2), MVAL,891
	Actual configuration for AO1	ActlAO1Cnf(2), MVAL,886
	Actual configuration for AO2	ActlAO2Cnf(2), MVAL,887
Actual configuration for	Devices	BACnet object
room operator unit, room sensors and	Actual configuration room operator unit POS8	ActlPos8Cnf, MVAL,747
peripheral devices	Actual configuration for room sensor QMX3.P30	ActlQmx3p30Cnf, MVAL,412
	Actual configuration for room sensor QMX3.P40	ActlQmx3p40Cnf, MVAL,413
	Actual configuration for room sensor QMX3.P70	ActlQmx3p70Cnf, MVAL,414
	Actual configuration I/O extension device POS9	ActlPos9Cnf, MVAL,576
	Actual configuration duct pressure device QBM97#1	ActlQbm97Cnf1, MVAL,577
	Actual configuration duct pressure device QBM97#2	ActlQbm97Cnf2, MVAL,881
	Actual configuration modbus fans	ActlMdbsFanCnf, MVAL,920

4.6.2 Language selection

The controller supports the following languages:

- English
- German
- French
- Italian
- Spanish

Languages can be selected in the client (e.g. Climatix IC, ABT Go, ABT Site or End user app). All translated objects will be shown in the selected language.

4.6.3 Device Description

The "Device Description" text string (BA property 28) can be displayed. Object Name (HvacFnct26y_A) can be displayed and changed in the ABT Go via configuration/Network configuration.

Available parameters

Basic settings	BACnet object	R/RW	Note
Device Description	Device	R	(Read only in Cloud / Facility manager); changeable in BACnet Browser
Object Name	Device	R/RW	

4.6.4 Controller configuration: password protected access by user roles

The controller configuration can be backed up and/or restored. The handling is safe and flexible:

- The controller configuration can be accessed by different user roles.
- The controller/plant configuration can be password-protected for each of these user roles.
- An Administrator can set the password in ABT Go or ABT Site.
- Users can backup/restore their **own** configuration file.

The controller has 3 default users (see table below). A total of 6 users are possible.

Example of allowed	operations by	different user roles.
--------------------	---------------	-----------------------

User role	Role name in ABT Site	Configuration operations via ABT Go
Administrator	Administrator	Firmware upgradeConfiguration backupConfiguration restore
Installer	Advanced engineer	Firmware upgradeConfiguration backupConfiguration restore
Field Support	Standard engineer	Configuration backupConfiguration restore

4.6.5 Factory Reset

A Special BIN file can reset the controller to Siemens factory default settings (including a password reset).

You must request the BIN file.

The controller must be reset to factory settings on site.

Download the BIN file, for example, via ABT Go and set input DI1 to 1 (for example via a closed contact). Once completed, the controller starts the factory reset and restarts automatically.

Note: This BIN file does not include normal HRV functions, it can only be used for the factory reset.

5 Application functionalities

5.1 Application use cases

The application can be operated in two different use cases that

1. HRV system as the only influence on air flow:

Characteristics:

- Changes in fan speed have a direct influence on the air flow in the multiple rooms.
- The fan speed is depending on fan speed control, special fan speed control, temperature-, humidity- and air quality control.
- Commonly used with linear fan speed or air flow control.
- Advantages:
- This configuration allows the full functionality described in chapter "Configuration [→ 26]".

2. Independent secondary controls maintain dampers or VAV boxes:

Characteristics:

- Changes in fan speed might have no influence on the air flow in the rooms, as they can be compensated by the secondary controls.
- Commonly used with HRV duct pressure control.

Advantages:

- The influence of the room conditions on the HRV air flow can be limited depending on the system's functionality.
- 4 modes are available, in which the available functions and thus control choices vary from mode to mode. For example, mode 4 can be selected for VAV supply and extract:

Secondary control / Function	Mode 1	Mode 2	Mode 3	Mode 4
Fan boost	Х	Х		
Fireplace mode	Х	Х	Х	
Kitchen hood mode	Х	Х	Х	
Temperature control	Х			
Humidity control	Х			
Air quality control	Х			

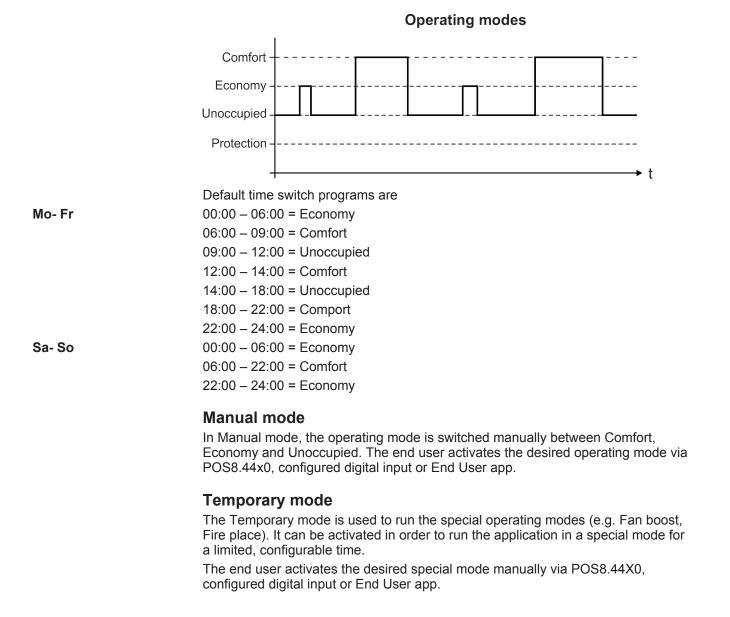
Configuration parameters

Basic settings	BACnet object	R/RW	Note
Room influence to fan speed configuration	FanSpdCtlCnf MVAL, 392	RW	Room influence to fan speed configuration

i

In ABT Go this parameter can be found under "Favorites > Favorite operation > Temperature control".

5.2 Controlling of operating modes


Three control modes, Auto, Manual or Temporary, are available for the operation of the plant.

The system modes control whether the system switches between different operating modes automatically or whether the user sets the operating modes himself (for Operating modes see "Operating mode categories [\rightarrow 58]").

In ABT Go the parameter can be found in the plant scheduler.

Auto mode

In Auto mode, the operating modes are controlled via time switch program (TSP). The set time switch program changes between operating modes Comfort, Economy, and Unoccupied depending on the TSP. A TSP can be set via POS8.44X0 or smart phone app (both ABT Go or End User App). For TSP mode, 3 normal operating modes are supported, each with individual setpoints.

5.3 Operating mode categories

The following selectable operating modes belong to operating mode categories:

Operating mode	Category	Operating via	Duration	Activation signal
Protection	Off mode	APP, DI	Permanent	
Unoccupied	Normal or Away mode	APP, POS8, DI	Permanent or TSP	
Economy	Normal mode	APP, POS8, DI	Permanent or TSP	
Comfort	Normal or Home mode	APP, POS8, DI	Permanent or TSP	
Fan boost (Rapid ventilation)	Temporary mode	APP, POS8, DI	Temporary	Continuous or pulse signal (duration can be parameterized)
Fire place	Temporary mode	APP, POS8, DI	Temporary	Continuous or pulse signal (duration can be parameterized)
Kitchen hood	Temporary mode	DI	Temporary	Continuous signal

5.3.1 Normal modes

	The normal modes Unoccupied, Economy and Comfort are the main operating modes that can be applied for a constant and, if desired, infinite time. For each one, certain settings are defined, which sensibly apply to the corresponding state of the system.				
Unoccupied	The building is unoccupied and the system is operated with the most essential settings needed.				
Economy	The building is occupied, but the syst efficient settings.	em is operated with eco	nomical, energy-		
Comfort	The building is occupied and the syst user.	em is operated accordin	g to the needs of the		
	For the normal modes, individual valution (r.H.), air quality (AQ) and temperature		ling relative humidity		
Available parameters	Description	BACnet object	R/RW		
Normal modes	Comfort operation mode input	CmfOpModRIn D1: BI,82 D2: BI,99 X3: BI,116 X8: BI,133	R		
	Economy operation mode input	EcoOpModRIn D1: BI,83 D2: BI,100 X3: BI,117 X8: BI,134	R		
	Unoccupied operation mode input	UcdOpModRIn D1: BI,84 D2: BI,101 X3: BI,118 X8: BI,135	R		

5.3.2 Temporary modes

The modes Fan Boost, Fire Place and Kitchen Hood are temporary modes that can only be activated for a certain, settable time.

The temporary modes are activated either via POS8.44X0 or configured digital input as an impulse button or, when pressed longer, as an "egg timer".

Once activated, they override all normal operating mode and for the set time, the dedicated settings for the temporary mode apply, which mostly concerns the fan speed.

Signal for Fire Place and Fan Boost

• If the duration of the signal is < 5 seconds:

The signal is interpreted as an impulse: The temporary mode is started and only stopped when the timer has expired.

• If the duration of the signal is > 5 seconds: The signal is interpreted as an "egg timer": Temporary mode is started when

the signal is active and stopped when the signal is inactive.

Signal for Kitchen Hood The signal is interpreted as a feedback from the kitchen hood: The temporary mode is started when the signal is active and stopped when the signal is inactive. The temporary operating modes have no dedicated r.H., AQ and temperature settings. For these settings, the Economy values apply.

5.3.3 Special modes (At home / Away)

"At home"-mode and "Away"-mode are preset special modes that the end user can switch between via End User app or POS8.44x0.

- If the application is switched to Away, operating mode is set to Unoccupied.
- If the application is switched to **At home**, operating mode is set back to **the normal operation**.

The "Away" mode has priority over normal and temporary modes in both AUTO and MANUAL operation (except for configured digital input and binary input signals). This means that one can switch to "Away" and return to "At home" mode anytime.

Examples

- In AUTO operation:
 - Switching to "Away" sets the operating mode to Unoccupied.
 - Switching back to "At home" returns the controller to AUTO operation and selects the operating mode currently defined by the TSP (can be Economy or Comfort or even Unoccupied).
- In MANUAL operation:
 - Switching to "Away" sets the operating mode to Unoccupied.
 - Switching back to "At home" returns the controller to MANUAL operation and the previous operating mode (can be Economy or Comfort or even Unoccupied).

Delay time for Unoccupied The Unoccupied mode can be set with a delay time that starts when the device is switched from any operating mode to Unoccupied.

This is useful, for example, when the end user leaves the house immediately after cooking or showering without command to the application. The switch to Unoccupied mode takes then place after the timer has elapsed.

F	Parameter	Detail information	BACnet object	R/RW	State
ι	Unoccupied delay timer duration		DlyOnUnOcc	RW	

5.3.4 Off mode

The operating mode Protection switches the system into a form of "Off" mode in which the fans no longer run. However, the system is not switched off completely, individual pumps can continue to operate and the frost protection strategy continues to run for as long as has been set.

The protection mode can only be set in the configuration and cannot be set by the end user themselves (neither via app nor POS8.44X0).

5.4 Operating mode settings

The settings for the operating modes define the specific settings for the **supply and exhaust fans** for all operating modes and for the speed, flow and pressure control strategies. These settings are configured by the installer. The end user has no option to change the values for the operating modes.

For Comfort, Economy and Unoccupied modes, dedicated settings for **relative humidity (r.H.), air quality (AQ) and temperature** can be defined.

The temporary operating modes Fan boost, Fire place and Kitchen hood have no dedicated r.H., AQ and temperature settings. For these modes, the settings for Economy mode apply.

Available parameters

Parameter	Detail information	BACnet object	R/RW	State
Current operating	Prio 7: Request from digital inputs:	ROpMod	RW	1: Protection
mode	Comfort, Economy, Unoccupied, Protection	MVAL,168		2: Unoccupied
(constant, for end- user)	Prio 10: Periodic maintenance or maintenance shutdown			3: Economy
	Prio 12: Away: Unoccupied			4: Comfort
	Prio 13: Manual: Comfort, Economy, Unoccupied, Protection Prio 15: TSP: Comfort, Economy, Unoccupied			
Current ventilation		HrvSta	R	1: Protection
operating mode		MVAL,166		2: Unoccupied 3: Economy 4: Comfort 5: Kitchen hood 6: Fire place 7: Fan boost

Configuration parameter

Description	BACnet object	R/RW	State
TSP overrides manual operation upon a change	SchedRstManCnf BVAL,218		0: manual operation is permanent 1: manual operation is overridden with the next change

Analysis

Parameter	Detail information	R/RW	State
Present plant operating mode	Plant operating mode including protection functions Prio 3 : Emergency Prio 4 : A-Alarm or power-up Prio 9 : De-icing Prio 12 : Request from digital inputs, also temporary boost Prio 13 : If in temporary mode	RW	1: Off by A-Alarm 2: Protection 3: Economy 4: Pre-Comfort 5: Comfort 69: Not used 10: Free Cooling 11: Not used 12: Boost, fireplace or kitchen 13: Not used 14: Off by emergency 15: Smk positive press 16: Smk negative press 17: Smk Purge 18: Frost water 19: Startup/Shup down 20: De-icing with fans

5.5 Fan speed control

The controller supports three different types of fan control strategies:

- Linear fan speed
- Constant air flow control
- Constant duct pressure control.

See "Choosing the functions [\rightarrow 30]".

Only one type of control strategy can be active at a time and the same strategy must be used for both the supply and exhaust fan.

The change from one control strategy to another can be made only during commissioning.

Strategy	Unit
Linear fan speed	%
Constant air flow control	m3/h
Constant duct pressure control	Ра

Note: For the sake of simplicity, the term "fan speed" is used for all three strategies throughout the document.

5.5.1 Linear fan speed (VntCtl23y, FanSu23y, FanEh23y)

Fan speed control

Supply fan and exhaust fan setpoints have defined setting for each operating mode level. Individual percentage value is used between 0...100 %. These settings only define the fan speed used in various operating modes and they have no effect on other functions like de-icing or AQ/r.H. control.

During active AQ/r.H. control, values set here are used as minimum speed. During active temperature control, values set here are used as maximum speed. Depending on deviations to setpoint, temperature, AQ/r.H. control can freely increase/decrease the speed of both fans simultaneously with symmetrical control signal which then keeps the set supply / exhaust ratio in every situation.

Fan speed monitoring

Fan spend can be monitored to detect the actual speed of the fans or possible device problems if fans with tacho signal output are used, or a separate analog input for fan speed is available, or if Modbus fans are used, the fan speed can be monitored to detect the actual speed of the fans or possible device problems. The tacho input signal is mapped to a 0...100% value and each fan has a configurable minimum fan speed and a minimum feedback signal assigned to the minimum fan speed value. A fan speed feedback fault is detected if fan speed output is higher than the minimum fan speed and the fan speed feedback drops below the fan speed feedback fault limit for longer than an allowed tolerance time.

The allowed tolerance time (limited to a maximum of 60 sec) is the time, after switching on, that it has built up the correct air flow. The same conditions apply for the startup procedure. The startup configuration is also used for the fan speed monitoring.

Fan speed feedback fault is combined with the fan error signal to create a fan fault alarm.

For Modbus fans, Modbus communication is also supervised.

The alarm category of all fan alarms for both fans can be configured as

- A-Alarm (shutting down the plant) or
- B-Alarm (only indication, no shutdown function) or
- None (no fault supervision. Use only when no feedback signal exists and do not use on Modbus fans).

Unit configuration	BACnet object	R/RW	Unit
Minimum fan speed	FanSpdMinRel AVAL,210	RW	%
Fan speed feedback fault limit	FanSpdFbFltLm AVAL,209	RW	% if no feedback signal available, see alarming
Allowed tolerance time fan speed feedback fault supply fan = startup delay time step 7	TiSttUpSpdVnt PINTVAI,104	RW	Tolerance time = TiSttUpSpdVnt – 5 sec, maximal 60 sec
Allowed tolerance time fan speed feedback fault exhaust fan = startup delay time step 6	DlyOnAflEhSta PINTVAL,129	RW	Tolerance time = DlyOnAflEhSta – 5 sec, max. 60 sec
Ramp up/down time fans	TiRmpFanSuSpd PINTVAL,105	RW	S

Available parameters for linear fan speed

5.5.1.1 Available parameters for supply fan (linear fan speed)

Available parameters for supply fan

Current state	BACnet object	R/RW	Unit
Present ventilation setpoint for air quality control	PrSpAQual AVAL,50	R	ppm
Supply fan speed	FanSuSpd	RW	%
Prio 2: Fire / Smoke	A1: AO,102		
Prio 5: Protection	A2: AO,111		
	A3: AO,120		
	A4: AO,129		
	Modbus: AO,149		
	POS9: AVAL,750		
	QBM1AO1: AVAL,711		
	QBM1AO2: AVAL,712		
	QBM2AO1: AVAL,713		
	QBM2AO2: AVAL,718		
Supply fan speed feedback	FanSuSpdFb	R	%
	Tacho:AI,65		
	0~10V:AI,96		
	Modbus: AI,163		
Supply fan fault	FanSuFlt	R	
	D1: BI, 174 (NO)		
	BI, 175 (NC)		
	D2: BI, 176 (NO)		
	BI, 177 (NC)		
	X3: BI, 178 (NO)		
	X8: BI, 180 (NO)		
	Modbus: BI,144		
Operating mode settings	BACnet object	R/RW	Unit
	SpFanSuSpdUcd	RW	%
Unoccupied: supply	AVAL,290		
Unoccupied: supply Economy: supply		RW	%
	AVAL,290 SpFanSuSpdEco		%
Economy: supply	AVAL,290 SpFanSuSpdEco AVAL,289	RW	
Economy: supply Comfort: supply	AVAL,290 SpFanSuSpdEco AVAL,289 SpFanSuSpdCmf AVAL,288	RW	
Economy: supply	AVAL,290 SpFanSuSpdEco AVAL,289 SpFanSuSpdCmf	RW	%
Economy: supply Comfort: supply Fire place: supply	AVAL,290 SpFanSuSpdEco AVAL,289 SpFanSuSpdCmf AVAL,288 SpFanSuSpdFplc AVAL,87	RW	%
Economy: supply Comfort: supply	AVAL,290SpFanSuSpdEcoAVAL,289SpFanSuSpdCmfAVAL,288SpFanSuSpdFplc	RW RW RW	%
Economy: supply Comfort: supply Fire place: supply Kitchen hood: supply	AVAL,290 SpFanSuSpdEco AVAL,289 SpFanSuSpdCmf AVAL,288 SpFanSuSpdFplc AVAL,87 SpFanSuSpdKtch AVAL,291	RW RW RW	%
Economy: supply Comfort: supply Fire place: supply	AVAL,290SpFanSuSpdEcoAVAL,289SpFanSuSpdCmfAVAL,288SpFanSuSpdFplcAVAL,87SpFanSuSpdKtch	RW RW RW RW	% % % %
Economy: supply Comfort: supply Fire place: supply Kitchen hood: supply De-icing fan speed supply	AVAL,290SpFanSuSpdEcoAVAL,289SpFanSuSpdCmfAVAL,288SpFanSuSpdFplcAVAL,87SpFanSuSpdKtchAVAL,291SpFanSuSpdDeicAVAL,208	RW RW RW RW RW	% % % % % %
Economy: supply Comfort: supply Fire place: supply Kitchen hood: supply	AVAL,290SpFanSuSpdEcoAVAL,289SpFanSuSpdCmfAVAL,288SpFanSuSpdFplcAVAL,87SpFanSuSpdKtchAVAL,291SpFanSuSpdDeic	RW RW RW RW	% % % %
Economy: supply Comfort: supply Fire place: supply Kitchen hood: supply De-icing fan speed supply	AVAL,290SpFanSuSpdEcoAVAL,289SpFanSuSpdCmfAVAL,288SpFanSuSpdFplcAVAL,87SpFanSuSpdKtchAVAL,291SpFanSuSpdDeicAVAL,208SpFanSuSpdBoost	RW RW RW RW RW	% % % % % %
Economy: supply Comfort: supply Fire place: supply Kitchen hood: supply De-icing fan speed supply Boost: supply	AVAL,290 SpFanSuSpdEco AVAL,289 SpFanSuSpdCmf AVAL,288 SpFanSuSpdFplc AVAL,87 SpFanSuSpdKtch AVAL,291 SpFanSuSpdDeic AVAL,208 SpFanSuSpdBoost AVAL,787	RW RW RW RW RW RW RW	% % % % % %

-

Testing and debugging	BACnet object	R/RW	State
Fan device mode	FanSuDevMod	RW	1: Off
Prio 2: Fire / Smoke	MVAL,151		2: Control mode
Prio 5: Protection			3: Max.air vol.flow
			4: Min.air vol.flow
			5: Manual speed
			6: Smoke ctrl. air flow
			7: De-icing air vol.flow
			8: Startup

5.5.1.2 Available parameters for exhaust fan (linear fan speed)

Available parameters for exhaust fan

Current state	BACnet object	R/RW	Unit
Exhaust fan speed	FanEhSpd	RW	%
Prio 2: Fire / Smoke	A1: AO,103		
Prio 5: Protection	A2: AO,112		
	A3: AO,121		
	A4: AO,130		
	Modbus: AO,150		
	POS9: AVAL,751		
	QBM1AO1: AVAL,714		
	QBM1AO2: AVAL,715		
	QBM2AO1: AVAL,716		
	QBM2AO2: AVAL,717		
Exhaust fan speed feedback	FanEhSpdFb	R	%
	Tacho:AI,69		
	0~10V:AI,97		
	Modbus: AI,164		
Exhaust fan fault	FanEhFlt	R	
	D1: BI, 182 (NO)		
	BI, 183 (NC)		
	D2: BI, 184 (NO)		
	BI, 185 (NC)		
	X3: BI, 186 (NO)		
	X8: BI, 187 (NO)		
	Modbus: BI,145		

Operating mode settings	BACnet object	R/RW	Unit
Unoccupied: exhaust	SpFanEhSpdUcd AVAL,294	RW	%
Economy: exhaust	SpFanEhSpdEco AVAL,293	RW	%
Comfort: exhaust	SpFanEhSpdCmf AVAL,292	RW	%
Fire place: exhaust	SpFanEhSpdFplc AVAL,92	RW	%
Kitchen hood: exhaust	SpFanEhSpdKtch AVAL,528	RW	%
De-icing fan speed exhaust	SpFanEhSpdDeic AVAL,295	RW	%
Boost: exhaust	SpFanEhSpdBoost AVAL,788	RW	%

Special settings	BACnet object	R/RW	Note
Tacho signal mapping	FanSuSpdFb	RW	Property 4965
Pulses/sec for 100% fan speed	AI,69		Range 0300 pulse/s

Testing and debugging	BACnet object	R/RW	State
Fan device mode	FanEhDevMod	RW	1: Off
Prio 2: Fire / Smoke	MVAL,163		2: Control mode
Prio 5: Protection			3: Max.air vol.flow
			4: Min.air vol.flow
			5: Manual speed
			6: Smoke ctrl. air flow
			7: De-icing air vol.flow

5.5.2 Constant air flow regulation (VntCtl21y, FanSu21y, FanEh21y)

Fan speed control

Supply fan and exhaust fan setpoints have defined air flow settings for each operating mode level. Setpoint used in the controller is m³/h.

These settings only define the flow used in various operating modes and they have no effect on other functions like de-icing, AQ/r.H. control.

During active AQ/r.H. control, values set here are used as minimum level. During active temperature control, the values are used as maximum levels. Depending on deviations to setpoint, temperature, AQ, r.H. control can freely modulate the speed of both fans simultaneously with symmetrical control signal which then keeps the set supply / exhaust ratio in every situation.

By measuring either the dynamic pressure via pitot tube or the pressure drop over a flow resistance (or a combination of both) air flow at these points can be calculated by using a fan specific K-value. The following formulas are used and only m³/h values can be set.

Supply airflow
$${\binom{m^3}{h}} = \sqrt{\Delta P_1} \times K1$$

Extract airflow ${\binom{m^3}{h}} = \sqrt{\Delta P_2} \times K2$

Range for setpoints depends on the ventilation unit's capacity. K-value is a constant and unique for each fan type.

If a pressure sensor becomes faulty and flow control can no longer be guaranteed, the fan control of the fan with a faulty sensor is automatically switched to linear fan speed control. Setpoints used for the linear fan speed control are then calculated by using the unit's nominal air flow value as 100 % and setting the actual flow setpoint proportionally according to the maximum value.

Example: If the air flow nominal is 100 m³/h and the flow for the Away-setting is set to 35 m³/h, a fan speed of 35 % (3.5 V) is used in the event of a fault.

Fan speed monitoring

The fan speed can be monitored to detect the actual speed of the fans or possible device problems if fans with tacho signal output are used, or a separate analog input for fan speed is available, or Modbus fans are used. The tacho input signal is mapped to a 0...100 % value with each fan configurable to a minimum fan speed and a minimum feedback signal assigned to the minimum fan speed value. A fan speed feedback fault is detected if fan speed output is higher than the minimum fan speed and the fan speed feedback drops below fan speed feedback fault limit for longer than an allowed tolerance time.

The allowed tolerance time (limited to a maximum of 60 sec) is the time after switch-on that the fan has built up the correct air flow. The same conditions apply for the startup procedure The startup configuration is also used for fan speed monitoring.

Fan speed feedback fault is combined with the fan error signal to create a fan fault alarm.

For Modbus fans, Modbus communication is also supervised.

The alarm category of all fan alarms for both fans can be configured as

- A-Alarm (shutting down the plant) or
- B-Alarm (only indication, no shutdown function) or
- None (no fault supervision. Use only when no feedback signal exists and do not use on Modbus fans).

Fan speed control

Available parameters for air flow control

Unit configuration	BACnet object	R/RW	Unit
Air flow nominal	AirFINom AVAL,187	RW	m ³ /h Maximum air flow of the unit
Air flow minimum	AirFIMin AVAL,186	RW	m ³ /h Minimum air flow of the unit
Minimum fan speed	FanSpdMinRel AVAL,192	RW	%
Fan speed feedback fault Limit	FanSpdFbFltLm AVAL,190	RW	% if no feedback signal available, see alarming
Allowed tolerance time fan speed feedback fault supply fan = startup delay time step 7	TiSttUpSpdVnt PINTVAI,104	RW	Tolerance time = TiSttUpSpdVnt – 5 sec, maximal 60 sec
Allowed tolerance time fan speed feedback fault exhaust fan = startup delay time step 6	DlyOnAflEhSta PINTVAL,129	RW	Tolerance time = DlyOnAflEhSta – 5 sec, max 60 sec
Ramp up / down time fans	TiRmpFanSuSpd PINTVAL,93	RW	S

5.5.2.1 Available parameters for the supply fan (constant air flow)

Available parameters supply fan

Current state	BACnet object	R/RW	Unit
Present flow setpoint supply	SpAirFISu AVAL,182	R	m³/h
Present flow supply	AirFISu AVAL,183	R	m³/h
Supply fan pressure diff.	DiffPFanSu POS9: AVAL,17 QBM1P1: AVAL,459 QBM1P2: AVAL,701 QBM2P1: AVAL,643 QBM2P2: AVAL,707	R	Pa
Supply fan speed Prio 2: Fire / Smoke Prio 5: Protection	FanSuSpd A1: AO,102 A2: AO,111 A3: AO,120 A4: AO,129 Modbus: AO,149 POS9: AVAL,750 QBM1AO1: AVAL,711 QBM1AO2: AVAL,712 QBM2AO1: AVAL,713 QBM2AO2: AVAL,718	RW	%
Supply fan speed feedback	FanSuSpdFb Tacho:Al,65 0~10V:Al,96 Modbus: Al,163	R	%
Supply fan fault	FanSuFlt D1: Bl, 174 (NO) Bl, 175 (NC) D2: Bl, 176 (NO) Bl, 177 (NC) X3: Bl, 178 (NO) X8: Bl, 180 (NO) Modbus: Bl,144	R	

Operating mode settings	BACnet object	R/RW	Unit
Unoccupied: supply	SpAirFISuUcd AVAL,272	RW	m³/h
Economy: supply	SpAirFlSuEco AVAL,271	RW	m³/h
Comfort: supply	SpAirFlSuCmf AVAL,270	RW	m³/h
Fire place: supply	SpAirFlSuFplc AVAL,57	RW	m³/h
Kitchen hood: supply	SpAirFlSuKtch AVAL,273	RW	m³/h
De-icing air flow	SpAirFlSuDeic AVAL,181	RW	m³/h
Boost: supply	SpAirFlSuBoost AVAL,789	RW	m³/h
Special settings	BACnet object	R/RW	Unit
Supply fan Kp	TnAirFISuCtr PINTVAL,97	RW	% / (m³/h)
Supply fan Tn	GainAirFlSuCtr AVAL,191	RW	S
K-factor, supply fan	AirFISuCoef AVAL,188	RW	m³/h per Pa
Tacho signal mapping Pulses/sec for 100% fan speed	FanSuSpdFb Al,65	RW	Property 4965 Range 0300 pulse/s
Testing and debugging	BACnet object	R/RW	State
Fan device mode Prio 2: Fire / Smoke Prio 5: Protection	FanSuDevMod MVAL,146	RW	1: Off 2: Control mode 3: Max.air vol.flow 4: Min.air vol.flow 5: Manual speed 6: Smoke ctrl. air flow 7: De-icing air vol.flow 8: Startup

5.5.2.2 Available parameters for exhaust fan (constant air flow)

Available parameters for exhaust fan

Current state	BACnet object	R/RW	Unit
Present flow setpoint exhaust	SpAirFlEh	R	m³/h
	AVAL,227		
Present flow exhaust	AirFlEh	R	m³/h
	AVAL,228		
Exhaust fan pressure diff.	DiffPFanEh	R	Ра
	POS9: AVAL,20		
	QBM1P1: AVAL,689		
	QBM1P2: AVAL,461		
	QBM2P1: AVAL,704		
	QBM2P2: AVAL,645		
Exhaust fan speed	FanEhSpd	RW	%
Prio 2: Fire / Smoke	A1: AO,103		
Prio 5: Protection	A2: AO,112		
	A3: AO,121		
	A4: AO,130		
	ModbusFan: AO,150		
	POS9: AVAL,751		
	QBM1AO1: AVAL,714		
	QBM1AO2: AVAL,715		
	QBM2AO1: AVAL,716		
	QBM2AO2: AVAL,717		
Exhaust fan speed feedback	FanEhSpdFb	R	%
	Tacho:Al,69		
	0~10V:AI,97		
	Modbus: AI,164		
Exhaust fan fault	FanEhFlt	R	
	D1: BI, 182 (NO)		
	BI, 183 (NC)		
	D2: BI, 184 (NO)		
	BI, 185 (NC)		
	X3: BI, 186 (NO)		
	X8: BI, 187 (NO)		
	Modbus: BI,145		

Operating mode settings	BACnet object	R/RW	Unit
Unoccupied: exhaust	SpAirFIEhUcd AVAL,276	RW	m³/h
Economy: exhaust	SpAirFIEhEco AVAL,275	RW	m³/h
Comfort: exhaust	SpAirFIEhCmf AVAL,274	RW	m³/h
Fire place: exhaust	SpAirFIEhFplc AVAL,62	RW	m³/h
Kitchen hood: exhaust	SpAirFlEhKtch AVAL,277	RW	m³/h
De-icing air flow	SpAirFIEhDeic AVAL,226	RW	m³/h
Boost: exhaust	SpAirFIEhBoost AVAL,790	RW	m³/h
Special settings	BACnet object	R/RW	Unit / Note
Exhaust fan Kp	GainAirFlEhCtr AVAL,231	RW	% / (m3/h)
Exhaust fan Tn	TnAirFlEhCtr PINTVAL,122	RW	s
K-factor, exhaust fan	AirFlEhCoef AVAL,229	RW	m³/h per Pa
Tacho signal mapping	FanEhSpdFb	RW	Property 4965
Pulses/sec for 100% fan speed	AI,69		Range 0300 pulse/s
Testing and debugging	BACnet object	R/RW	State
Fan device mode	FanEhDevMod	RW	1: Off
Prio 2: Fire / Smoke			
	MVAL,161		2: Control mode
Prio 5: Protection	MVAL,161		3: Max.air vol.flow
	MVAL,161		3: Max.air vol.flow 4: Min.air vol.flow
	MVAL,161		3: Max.air vol.flow
	MVAL,161		 3: Max.air vol.flow 4: Min.air vol.flow 5: Manual speed 6: Smoke ctrl. air flow

5.5.3 Constant duct pressure (VntCtl22y, FanSu22y, FanEh22y)

Fan speed control

Supply fan and exhaust fan have defined duct pressure setpoints for each operating mode, Pascal value is used. By using PSu and PEx pressure sensors, the function controls fan speed to maintain duct pressure at a constant level.

These settings only define the pressure used in various operating modes and they have no effect on other functions, like de-icing or AQ/r.H. control.

If AQ/r.H. control is active, the values set here are used as the minimum level. With active temperature control, the values are used as maximum values. Depending on deviations from setpoint, temperature, the AQ/r.H. control can freely increase or decrease the speed of both fans simultaneously with a symmetrical control signal, which then maintains the setpoint ratio in any situation.

Special operation with only one pressure sensor

In some situations, it might be sufficient to select the use of only one pressure sensor in a duct. In this case, the pressure control is made with that fan which is in the same duct as the pressure sensor. The other fan always follows the "master" fan according to the following formula:

$$FanSpd_{Follow} = FanSpd_{Master} + \frac{SpP_{Follow} - SpP_{Master}}{PSuNom}$$

If the pressure sensor becomes faulty and control can no longer be guaranteed, fan control of the duct with faulty sensor is automatically switched to linear fan speed control. Setpoints used for the linear fan speed control are then calculated by using the maximum unit pressure value as 100% and setting the actual pressure setpoint proportionally according to the maximum value.

Example: When maximum unit pressure is 100 Pa and AWAY pressure is set to 35 Pa then fan speed of 35 % is used in case of a fault.

Fan speed monitoring

The fan speed can be monitored to detect the actual speed of the fans or possible device problems if fans with tacho signal output are used, or a separate analog input for fan speed is available, or Modbus fans are used. The tacho input signal is mapped to a 0...100 % value with each fan configurable to a minimum fan speed and a minimum feedback signal assigned to the minimum fan speed value. A fan speed feedback fault is detected if fan speed output is higher than the minimum fan speed and the fan speed feedback drops below fan speed feedback fault limit for longer than an allowed tolerance time.

The allowed tolerance time (limited to a maximum of 60 sec) is the time, after switch-on that the fan has built up the correct air flow. The same conditions apply for the startup procedure: The startup configuration is also used for fan speed monitoring.

Fan speed feedback fault is combined with the fan error signal to create a fan fault alarm.

For Modbus fans, Modbus communication is also supervised.

The alarm category of all fan alarms for both fans can be configured as

- A-Alarm (shutting down the plant) or
- B-Alarm (only indication, no shutdown function) or
- None (no fault supervision. Use only when no feedback signal exists and do not use on Modbus fans).

Fan speed control

Available parameters for constant duct pressure

Unit configuration	BACnet object	R/RW	Note
Duct pressure nominal	PSuNom, AVAL,119	RW	Pa; Maximum duct pressure of the unit
Duct pressure minimum	PDuctMin AVAL,198	RW	Pa
Minimum fan speed	FanSpdMinRel AVAL,201		%
Fan speed feedback fault limit	FanSpdFbFltLm AVAL,197	RW	%
Allowed tolerance time fan speed feedback fault supply fan = startup delay time step 7	TiSttUpSpdVnt PINTVAI,104	RW	Tolerance time = TiSttUpSpdVnt – 5 sec, maximal 60 sec
Allowed tolerance time fan speed feedback fault exhaust fan = startup delay time step 6	DlyOnAflEhSta PINTVAL,129	RW	Tolerance time = DlyOnAflEhSta – 5 sec, max. 60 sec
Selection of active sensor	PSenCnf MVAL,150		1 = Both sensors (default) 2 = P4 supply air
Ramp up / down time of fans	TiRmpFanSuSpd PINTVAL,98	RW	3 = P5 exhaust air s

5.5.3.1 Available parameters for the supply fan (constant duct pressure)

	0
supply fan	F

Current state	BACnet object	R/RW	Unit/Note
Present pressure setpoint	SpPSu	R	Ра
supply	AVAL,193		
Present pressure supply	PSu	R	Ра
	POS9: AVAL,456		
	QBM1P1: AVAL,460		
	QBM1P2: AVAL,702		
	QBM2P1: AVAL,644		
	QBM2P2: AVAL,708		
Supply fan speed	FanSuSpd	RW	%
Prio 2: Fire / Smoke	A1: AO,102		
Prio 5: Protection	A2: AO,111		
	A3: AO,120		
	A4: AO,129		
	ModbusFan: AO,149		
	POS9: AVAL,750		
	QBM1AO1: AVAL,711		
	QBM1AO2: AVAL,712		
	QBM2AO1: AVAL,713		
	QBM2AO2: AVAL,718		

5

Current state	BACnet object	R/RW	Unit/Note
Supply fan speed feedback	FanSuSpdFb Tacho:AI,65 0~10V:AI,96 Modbus: AI,163	R	%
Supply fan fault	FanSuFlt D1: BI, 174 (NO) BI, 175 (NC) D2: BI, 176 (NO) BI, 177 (NC) X3: BI, 178 (NO) X8: BI, 180 (NO) Modbus: BI,144	R	
Present flow supply	AirFISu AVAL,204	R	m3/h, available, if DiffPFanSu is configured
Supply fan pressure diff.	DiffPFanSu POS9: AVAL,17 QBM1P1: AVAL,459 QBM1P2: AVAL,701 QBM2P1: AVAL,643 QBM2P2: AVAL,707	R	Pa, available, if DiffPFanSu is configured
Oper. mode settings	BACnet object	R/RW	Note
Unoccupied: supply	SpPSuUcd	RW	Ра
	AVAL,281		
Economy: supply		RW	Pa
Economy: supply Comfort: supply	AVAL,281 SpPSuEco	RW	Pa Pa
	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf		
Comfort: supply	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf AVAL,279 SpPSuFplc	RW	Pa
Comfort: supply Fire: supply	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf AVAL,279 SpPSuFplc AVAL,71 SpPSuKtch	RW	Pa Pa
Comfort: supply Fire: supply Kitchen hood: supply	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf AVAL,279 SpPSuFpIc AVAL,71 SpPSuKtch AVAL,282 SpPSuBoost	RW RW RW	Pa Pa Pa
Comfort: supply Fire: supply Kitchen hood: supply Boost: supply	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf AVAL,279 SpPSuFplc AVAL,71 SpPSuKtch AVAL,282 SpPSuBoost AVAL,791	RW RW RW RW	Pa Pa Pa Pa
Comfort: supply Fire: supply Kitchen hood: supply Boost: supply Special settings	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf AVAL,279 SpPSuFplc AVAL,71 SpPSuKtch AVAL,282 SpPSuBoost AVAL,791 BACnet object GainPSuCtr	RW RW RW RW RW	Pa Pa Pa Pa Vnit
Comfort: supply Fire: supply Kitchen hood: supply Boost: supply Special settings Supply fan Kp	AVAL,281 SpPSuEco AVAL,280 SpPSuCmf AVAL,279 SpPSuFplc AVAL,71 SpPSuKtch AVAL,71 SpPSuKtch AVAL,282 SpPSuBoost AVAL,791 BACnet object GainPSuCtr AVAL,200 TnPSuCtr	RW RW RW RW RW	Pa Pa Pa Pa Vnit %/Pa

Testing / debugging	BACnet object	R/RW	State
Fan device mode	FanSuDevMod	RW	1: Off
Prio 2: Fire / Smoke	MVAL,148		2: Control mode
Prio 5: Protection			3: Max.air vol.flow
			4: Min.air vol.flow
			5: Manual speed
			6: Smoke ctrl. duct pressure De-icing air
			7: Vol.flow
			8: Startup

5.5.3.2 Available parameters for the exhaust fan (constant duct pressure)

Available parmeters for exhaust fan

Current state	BACnet object	R/RW	Unit
Present pressure setpoint exhaust	SpPEx AVAL,234	R	Ра
Present pressure exhaust	PEx POS9: AVAL,457 QBM1P1: AVAL,669 QBM1P2: AVAL,699 QBM2P1: AVAL,705 QBM2P2: AVAL,646	R	Pa
Exhaust fan speed Prio 2: Fire / Smoke Prio 5: Protection	FanEhSpd A1: AO,103 A2: AO,112 A3: AO,121 A4: AO,130 ModbusFan: AO,150 POS9: AVAL,751 QBM1AO1: AVAL,714 QBM1AO2: AVAL,715 QBM2AO1: AVAL,716 QBM2AO2: AVAL,717	RW	%
Exhaust fan speed feedback	FanEhSpdFb Tacho:AI,69 0~10V:AI,97 Modbus: AI,164	R	%
Exhaust fan fault	FanEhFlt D1: BI, 182 (NO) BI, 183 (NC) D2: BI, 184 (NO) BI, 185 (NC) X3: BI, 186 (NO) X8: BI, 187 (NO) Modbus: BI,145	R	
Present flow exhaust (Available if DiffPFanSu is configured)	AirFlEh AVAL,223	R	m3/h
Exhaust fan pressure diff (Available if DiffPFanSu is configured)	DiffPFanEh POS9: AVAL,20 QBM1P1: AVAL,689 QBM1P2: AVAL,461 QBM2P1: AVAL,704 QBM2P2: AVAL,645	R	Pa

5

Operating mode settings	BACnet object	R/RW	Unit
Unoccupied: extract	SpPExUcd AVAL,285	RW	Ра
Economy: extract	SpPExEco AVAL,284	RW	Ра
Comfort: extract	SpPExCmf AVAL,283	RW	Ра
Fire: exhaust	SpPExFplc AVAL,76	RW	Ра
Kitchen hood: extract	SpPExKtch AVAL,286	RW	Ра
Boost: exhaust	SpPExBoost AVAL,792	RW	Ра
Special settings	BACnet object	R/RW	Unit
Exhaust fan Kp	GainAirFlEhCtr AVAL,231	RW	%/Pa
Exhaust fan Tn	TnAirFlEhCtr PINTVAL,122	RW	S
K-factor, exhaust fan	AirFIEhCoef AVAL,236	RW	M3/h per Pa
Tacho signal mapping Property 4965	FanSuSpdFb Al,65	RW	Pulses/sec for 100% fan speed Range 0300 pulse/s
Testing and debugging	BACnet object	R/RW	State
Fan device mode Prio 2: Fire / Smoke Prio 5: Protection	FanEhDevMod MVAL,162	RW	1: Off 2: Control mode 3: Max.air vol.flow 4: Min.air vol.flow 5: Manual speed 6: Smoke ctrl. duct pressure 7: De-icing air vol.flow 8: Startup

5.5.4 Fan speed control for temporary modes

5.5.4.1 Fan boost

The Fan boost mode can be activated as a temporary mode to temporarily increase ventilation, e.g. after a bath or in a sauna. In this case, Fan boost is activated directly and kept active until the set time has elapsed.

Dedicated fan speeds can be set for fan boost mode.

Fan boost is blocked if the configuration of the room influence on the fan speed is in mode 3 or 4.

Available parameters

Current values	BACnet object	R/RW	Unit / Note
Activation input status	RpdVntIn	R	Pulse or 'egg
	D1:BI,69		timer' signal
	D2:BI,86		
	X3:BI,103		
	X8:BI,120		
Rapid ventilation status and operation	RpdVntOp	RW	
	BVAL,166		
Duration	TiRnRpdVnt	RW	Min
	PINTVAL,70		

5.5.4.2 Fire place function (Fire place)

The Fire place mode can be activated to generate an overpressure with the ventilation for a certain period of time. This overpressure helps to light the fireplace by creating draughts through the chimney.

In Fire place mode, the supply fan speed is always higher or equal to the exhaust fan speed.

Fire place operation is blocked if the configuration of the room influence on the fan speed is in mode 4.

Current values	BACnet object	R/RW	Note
Activation input status	FplcVntIn	R	
	D1: BI,71		
	D2: BI,88		
	X3: BI,105		
	X8: BI,122		
Duration	TiRnFplcVnt	RW	s
	PINTVAL,75		
Fire place status and operation	FplcVnt	RW	1: Active
	BVAL,172		0: Inactive

5.5.4.3 Kitchen hood function (Kitchen hood)

The Kitchen hood mode can be activated to create a suitable imbalance with the ventilation or the increase of the ventilation level. Depending on the solution, whether the kitchen hood has its own exhaust fan or not, the Kitchen hood operating mode can be set to maintain the overall ventilation balance while effectively extracting cooking fumes. Activation overwrites other active operating modes that are set in the timer program.

For the Kitchen hood mode, a dedicated fan speed can be set.

The Kitchen hood mode is blocked when the configuration of the room influence on the fan speed is done in mode 4.

Current values	BACnet object	R/RW	Note
Activation input status	KtchVntIn	R	
	D1: BI,138		
	D2: BI,139		
	X3: BI,140		
	X8: BI,141		
Kitchen hood status and operation	KtchVnt	RW	1: Active
	BVAL,240		0: Inactive

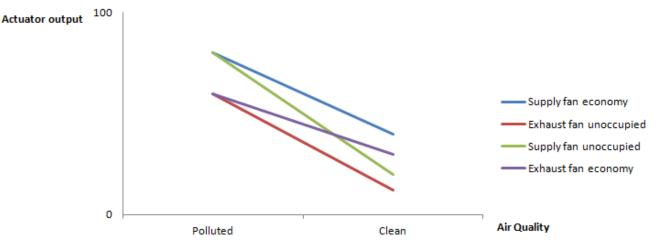
5.6 Air quality control (VntCtl11y, 12y, 13y)

5.6.1 CO2 / carbon dioxide, (AQualCtl21y)

By using a CO_2 sensor as an input from room and / or extract duct, this function controls the fan speeds to keep the set ppm-level. Fan Boost, Kitchen Hood and Fire Place have priority, so that the air quality control does not influence the fan speed. Comfort operating mode already runs with maximum fan speed for the system, so that AQ control does not have any influence. For Economy and Unoccupied, separate setpoints can be specified.

The air quality controller increases the fan speed to supply more fresh air and prevent the degree of air pollution from exceeding the setpoint. The calculation is performed by a PI-controller. Maximum speed is the setting for Comfort operating mode, minimum speed is defined by the active operating mode.

During active air quality control, the speed of both fans will be increased and decreased linearly between the maximum and minimum vales. When the ppm value drops below the setpoint, air quality controlling reduces the fan speed until the defined level for the active operating mode is reached.


It is possible to use one extract air sensor (0...10V), and one room air quality sensor QMX3.P70. In this case, the highest value of all valid sensors is used for fan controlling.

Sensor measuring range (default 0...2000ppm) can be set for the linear signal 0... 10 V to enable the use of various types of sensors. Min and max values are settable in the field via APP.

i

In duct pressure operation (see Basic configuration [\rightarrow 29]), air quality control is blocked if the configuration of the room influence to fan speed is in mode 2, 3 or 4.

Air Quality controller, actuator output diagram

R/RW Unit

5

Air quality value Room

Current value

Available parameters

	BRONELOBJEEL	10100	0
Air quality value Extract	AQualEx AI,67 (X1) AI,71 (X2) AI,73 (X3) AVAL,318 (POS9) AVAL,469 (QBM1) AVAL,673 (QBM2)	R	ppm
Air quality value Room	AQualR AI,105 (QMX.P70)	R	ppm
Present ventilation setpoint for air quality control (flow)	PrSpAQual AVAL,50	RW	Ppm Actual setpoint given by operating mode
Parameters for VntCtl11y	BACnet object	R/RW	Unit
Unoccupied: AQ setpoint	SpAQualRUcd AVAL,269	RW	ppm
Economy: AQ setpoint	SpAQualREco AVAL,53	RW	ppm
Comfort: AQ setpoint	SpAQualRCmf AVAL,51	RW	ppm
Ventilation Kp	GainVntCtr AVAL,64	RW	%/ppm
Ventilation Tn	TnVntCtr PINTVAL,71	RW	S
Special settings	BACnet object	R/RW	Note
Sensor ppm for 0V signal	AQualExPrcv1 AVAL,533 (X1) AVAL,534 (X2) AVAL,535 (X3) PINTVAL,609 (POS9) PINTVAL,610 (QBM)	R	
Sensor ppm for 10V signal	AQualExPrcv2 AVAL,536(X1) AVAL,537 (X2) AVAL,538 (X3) PINTVAL,611 (POS9) PINTVAL,612 (QBM)	R	
Testing and debugging	BACnet object	R/RW	Unit
Air quality controller output	FanVntReq AVAL,184 (Air flow) AVAL,194 (Duct press) AVAL,205 (Lin. Fan spd)	R	%

BACnet object

5.6.2 Fine dust (PmCtl21y)

By using a PM (particulate matter) sensor as an input from room, this function controls the fan speeds to keep the set concentration level. Separate setpoints can be specified for each normal operating mode.

At higher concentrations, the fan speed is increased to supply more fresh air and to prevent the concentration from exceeding the set value (according to PI-control). Fan speed is controlled dynamically to a higher value, if necessary up to the highest supply fan speed value of all defined modes (normal and special). Minimum speed is defined by the active operating mode.

If the air quality concentration exceeds the set point, the supply pressure is set to a higher value than the exhaust pressure.

With active air quality control, the speed of both fans is increased and decreased linearly and simultaneously with a symmetrical control signal (up to the set operating mode level), which then maintains the target ratio in every situation and the air quality at the target value.

It is possible that more than one AQ input is used simultaneously from different rooms. In this case, highest value wins and is used for fan controlling.

Sensor measuring range (concentration or indicators level) can be set for the linear signal 0...10 V to enable use of various types of sensors. Minimum and maximum values can be set via ABT Go.

Activation of the PM control requires configuration.

i	NOTICE
	 Particulate matters control is blocked if the configuration of the room influence to fan speed is in mode 2, 3 or 4, for example in duct pressure mode In the settings for pressure or airflow, it can be determined whether dampers are installed in the duct or not. Depending on this, fan speed control can be disabled for this mode

Current value	BACnet object	R/RW	Note
PM value in room	PmR	R	µg/m3
	AI,107 (X1)		
	AI,108 (X2)		
	AI,109 (X3)		
	AVAL,458 (POS9)		
	AVAL,471 (QBM1)		
	AVAL,675 (QBM2)		
Present ventilation setpoint	PrSpPmR	RW	µg/m3
particulate matters control	AVAL,449		Actual setpoint depending
			on operating mode
VntCtl11y parameters (flow)	BACnet object	R/RW	Note
Unoccupied: PM setpoint	SpPmRUcd	RW	µg/m3
	AVAL,450		
Economy: PM setpoint	SpPmREco	RW	µg/m3
	AVAL,451		
Comfort: PM setpoint	SpPmRCmf	RW	µg/m3
	AVAL,452		
Ventilation Kp	GainPmCtr	RW	%/µg/m3
	AVAL,453		
	· ·		
Ventilation Tn	TnPmCtr	RW	S

5

Special settings	BACnet object	R/RW	Note
Run time Pm controller	TiRnPmCtl PINTVAL,562	RW	S
Interruption time Pm controller	TilrptPmCtl PINTVAL,563	RW	s
Sensor µg/m3 for 0V signal	PmRPrcv1 AVAL,539 (X1) AVAL,540 (X2) AVAL,541 (X3) PINTVAL,613 (POS9) PINTVAL,614 (QBM)	RW	BACnet property 4999
Sensor µg/m3 for 10V signal	PmRPrcv2 AVAL,542 (X1) AVAL,543 (X2) AVAL,544 (X3) PINTVAL,615 (POS9) PINTVAL,616 (QBM)	RW	BACnet property 4998
Testing and debugging	BACnet object	R/RW	Note
PM controller output	PrSpPmR AVAL,449	R	%

5.7 Fan humidity control (DhuCtl11y)

Dehumidification control in wintertime reduces the fan speed settings to a lower speed. Humidity control only increases fan speed when room load is strong, i.e. humidity is increasing, and increases the speed until the maximum humidity is maintained.

It is possible to use one extract air sensor (0...10V), and up to two room humidity sensors QMX.P40, QMX.P70 and a POS8 with room humidity sensor. In this case, the highest value of all valid sensors is used for humidity control. For Comfort, Economy and Unoccupied operating modes, specific setpoint values can be given. Air humidification is not possible.

Dehumidification tries to maintain the set humidity level by modulating the following actuators:

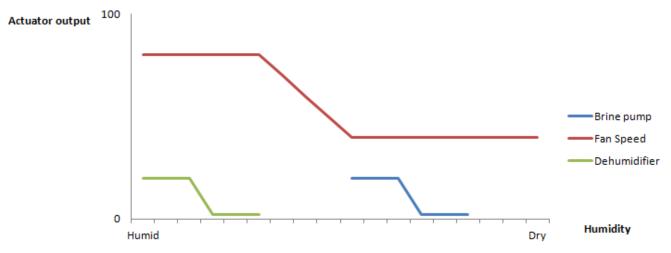
- 1. Preheating coil brine, if existing and dehumidification enabled and possible
- 2. Increasing fan speed, if dehumidification is enabled
- 3. External dehumidifier
- **Preheating coil brine** Used as a first actuator, if the brine coil is configured for use with humidity control. The brine coil is released for dehumidification, if the flow temperature is lower than the room dewpoint (minus configurable offset) and the outside air temperature is higher than the brine flow temperature. The brine pump is switched on with the idea to condensate water in the outside air. A 2-point control with configurable hysteresis is used.
- Fan speed Fan speed increase is used a second actuator.

If relative humidity exceeds the limit value, the speed for both fans is increased (according to PI-control) up to Comfort fan speed. During active humidity control, the speed of both fans will be increased and decreased linearly between the maximum and minimum vales. If the r.H. value drops below the setpoint, humidity control reduces the fan speed until the defined level for active operating mode is reached.

Boost, kitchen hood and fireplace have priority, so that humidity control does not influence the fan speed. Comfort operating mode already runs with maximum fan speed for the system, so that humidity control does not have any influence.

Since increased ventilation alone cannot lower the humidity level in every situation, the dew point temperature is used to define if outside air temperature is sufficient for lowering the humidity level in the room. In case the outside air temperature is low enough to assure dehumidification, the PI-control works continuously. Otherwise, the PI works periodically with configurable on and off times for the function.

The function is deactivated when the relative humidity drops below the current setpoint.


i

Humidity control with fan speed is blocked if the configuration of the room influence to fan speed is in mode 2, 3 or 4, for example in duct pressure mode, see "Application use cases [\rightarrow 56]".

External dehumidifier An external dehumidifier can also be used. It can be installed in the room or in the supply air duct. Depending on the design of the dehumidifier, it can have an integrated controller with sensor or be controlled by the CU as part of humidity control. In this case, a 2-point controller with configurable hsysteresis is used and the humidifier is switched on if the brine coil and the fans are not able to maintain the humidity setpoint or are not present.

When the external dehumidifier is installed in the room, it can run independently of the air handling unit. In this case, only room sensors are used and extract sensors are ignored.

Humidity controller, actuator output diagram

Fan humidity control (DhuCtl11y)

Current value		BACnet object	R/RW	Unit
Duct air humidity value		HuRelEx X1:Al,68 X2:Al,72 X3:Al,74 POS9: AVAL,319 QBM1: AVAL,470 QBM2: AVAL,674	R	% r.H.
Room air humidity value (QMX.3 P40)		HuRelR Al,102	R	% r.H.
Room air humidity value (QMX3. P70)		HuRelR Al,104	R	% r.H.
r.H. setpoint		PrSpDhu AVAL,148	R	% r.H.
Basic settings		BACnet object	R/RW	Unit
Unoccupied: r.H. setpoint		SpHuRelRUcd AVAL,311	RW	% r.H.
Economy: r.H. setpoint	r.H. setpoint		RW	% r.H.
Comfort: r.H. setpoint		SpHuRelRCmf AVAL,149	RW	% r.H.
Special settings		BACnet object	R/RW	Unit
Dehumidification Kp		GainDhuCtr AVAL,152	RW	% / % r.H.
Dehumidification Tn		TnDhuCtr PINTVAL,76	RW	s
On time for fan control		TiRnDhuCtl PINTVAL,77	RW	s
Off time for fan control		TilrptDhuCtl PINTVAL,78	RW	s
Hysteresis for preheating coil and external dehumic	difier	r HysDhuCtr AVAL,341		% r.H.
		Cnet object	R/RW	Unit
Testing and debugging	BAC			
Testing and debugging Fan dehumidification request	Fan AVA AVA	DhuReq AL,185 (AirFI) AL,195 (DuctP) AL,206 (Lin.fanspd)	R	%
	Fan AVA AVA AVA EnP	DhuReq AL,185 (AirFI) AL,195 (DuctP)		% On/off

5.8 Humidity evaluation with temperature sensors (HuREvI21y)

If no room or extract air humidity sensor is configured, the room humidity can be estimated based on temperature sensors before and after heat recovery in the supply air and in the extract air ducts.

The calculated humidity can be used for monitoring and for dehumidification control.

1	NOTICE
•	The humidity calculation cannot be used during periods of high humidity during the summer. A humidity sensor is required to detect high humidity during the summer.
Preconditions	 The HRV plant must fulfill the following conditions: The heat recovery is sensitive (i.e. it does not transfer humidity). Supply and extract air have the same flow rates. Humidity load is expected in the room, for example caused by people. Four temperature sensors are installed before and after the heat exchanger. If a preheating coil is installed: A dedicated sensor before heat recovery is required (TSuAfPreh). For no preheating coil: Outside air sensor can be used (TOa). If a heating coil, a cooling coil, or a mixing air damper exists afterr the heat exchanger: A dedicated sensor after the heat exchanger is required (TSuAfHExg). For no such coil or mixing air damper: The supply sensor can be used (TSu). The room is relatively small, so that the HRV is the main source of fresh air. Humidity calculation can be performed, if Heat recovery is active (bypass damper closed / opened less than 70% or rotary heat exchanger active with speed >30%, fixed values). The plant is running on Ucd, Eco, Cmf or temporary high mode and has been running for more than 2 minutes (configurable) and fireplace mode or kitchen hood mode are not active. The room has heating demand and the ERC is in heating mode. Outside air temperature is low, i.e.: lower than 1% C lower than the supply temperature There is humidity load in the room. There is condensation in the extract air over the heat exchanger.

Humidity evaluation with temperature sensors (HuREvI21y)

Evaluation

Humidity calculation is released if there is condensation in the heat exchanger. In the event of condensation, the temperature ratio of extract air to supply air is below the permissible condensation monitoring rate:

(TEx – TEh) / (TSu – TOa) < CdnMonRate.

The difference in the specific enthalpy between outside and supply air is calculated and matches the difference between extract air and exhaust air. The specific enthalpy for exhaust air is calculated based on the expected relative humidity in the event of condensation (configurable, HuRelEhExp) and the exhaust air temperature:

EnthEh = enthalpy(TEh, HuRelEhExp)

Adding the enthalpy difference outside/supply air to the exhaust air enthalpy provides the extract air enthalpy:

EnthEx = EnthEh + cp * (TSu – TEh)

The absolute extract air humidity is calculated together with the extract air temperature:

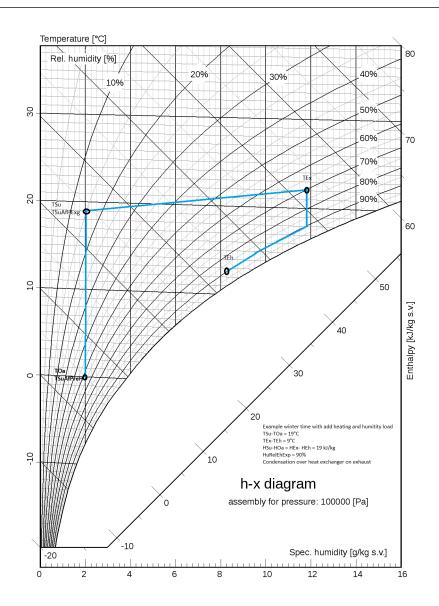
• HuAbsEx = absHum(EnthEx, TEx)

The relative extract air humidity is calculated:

• HuRelRCalc. = HuAbsEx / absHum(TEx, 100%)

The value is used by the humidity controller if there is no humidity sensor in the room or in extract air. The humidity controller operates as described above using this value.

Example of temperatures and humidity over the heat exchanger in an HX diagram:


TOa : incoming air 0°C, 50%r.h., 2g/kg, 5 kJ/kg (incoming air humidity is not relevant to the calculation)

TSu or TSuAfHexg: outgoing air warmed up by the heat exchanger to maintain absolute humidity. 19°C, 2 g/kg, 24kJ/kg

TEx: 22°C, 70%r.H., 53 kJ/kg. In the room, the air is warmed up, for example by floor heating. Humidity increases in occupied rooms.

TEh: 13°C, 90%r.H., 34 kJ/kg. Extract air is cooled down in the heat exchanger using cold incoming air. As TOa is below the dewpoint of the extract air, condensation occurs and absolute humidity decreases. The enthalpy subtracted from the extract air matches the enthalpy added to the supply air.

5

Humidity evaluation with temperature sensors (HuREvl21y)

Current value	BACnet object	R/RW	Unit
Calculated relative room humidity	HuRelRCalc AVAL,793	R	% r.H.
Specific enthalpy exhaust air	EnthEh AVAL,795	R	kJ/kg
Specific enthalpy extract air	EnthEx AVAL,796	R	kJ/kg
Extract air absolute humidity	HuAbsEx AVAL,798	R	g/kg
	1		
Special settings	BACnet object	R/RW	Unit
Special settings Condensation monitoring rate. Condensation over the heat exchanger is expected below this rate.	BACnet object CdnMonRate AVAL,794	R/RW	Unit -
Condensation monitoring rate. Condensation over the heat exchanger is expected below this	CdnMonRate		

5.9 Air temperature control

The application supports 2 different ventilation temperature controlling strategies:

- Constant supply air temperature (TSu) control
- Extract (TEx) temperature/room temperature control

The temperature setpoint page can be enabled or disabled on the POS8.44x0.

Current value	BACnet object	R/RW	Unit / Note
Enable temperature setpoint page for room operator unit	EnSpTPageRu BVAL,372	RW	0: not visible
			1: visible

5.9.1 Supply air temperature control (TSuCtlH21y)

The supply temperature is controlled in accordance to the TSu value to the specified supply temperature setpoint by using available and commissioned heating and cooling components.

Separate supply air temperature setpoints (SpT...) can be defined for the operating modes Unoccupied, Economy and Comfort. Individual tolerances before heating coils (DSpH...) and cooling coils (DSpC...) are used can be defined for Unoccupied, Economy and Comfort.

If the supply air temperature sensor is defective, an A alarm is triggered and the ventilation unit switches itself off.

Mixing air damper, heat recovery and heating/cooling coil are alternatively used for heating or cooling. The changeover criterium depends on the device and configuration.

Heating mode (TSuCtlH21y)

When (TSu) drops below setpoint (SpT...), the mixing air damper is used as first heating sequence. The mixing air damper is only used if it can provide heating and is not overridden by air quality control.

ERC is used for the 2nd heating sequence if the mixing air damper reaches the maximum position; it be able to provide heating and cannot be overridden by the deicing function.

Heating with additional energy is released when (TSu) drops below the setpoint minus tolerance (SpT... - ...DSpH...).

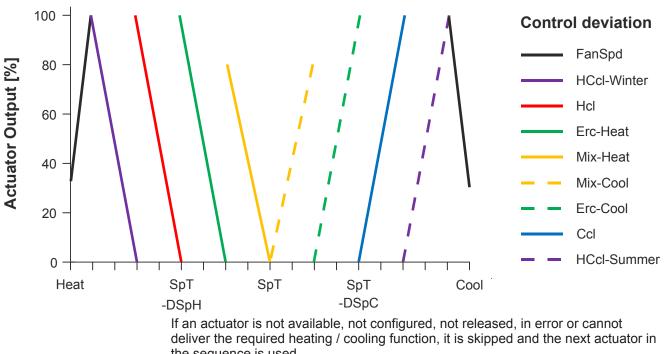
Electric heating coil or warm water heating coil is used for the 3rd heating sequence if ERC has been fully activated.

A combined heating/cooling coil is used for the 4th sequence if the heating coil is fully activated and the heating/cooling coil is in winter mode.

Fans can be used for the 5th heating sequence if configured for temperature control. The fan speed is reduced to maintain the temperature by decreasing the air flow.

Cooling mode (TSuCtlC21y)

If (TSu) exceeds the setpoint (SpT...), the mixing air damper (Mix) is used for the first cooling sequence. The mixing air damper is only used if it is able to provide cooling and if not overridden by air quality control.


ERC is used for the 2nd cooling sequence if the mixing air damper has reached the maximum position and is able to provide cooling.

Cooling with additional energy is released when (TSu) raises above the setpoint +tolerance (SpT... + DSpC...).

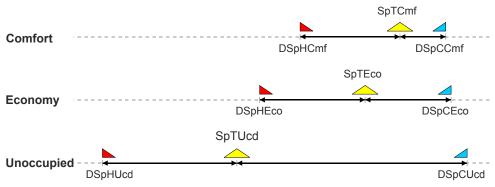
Electric cooling or chilled water cooling coil is used for the 3rd cooling sequence if ERC has been fully activated.

A combined heating/cooling coil is used for the 4th sequence if the cooling coil is fully activated and the heating/cooling coil is in summer mode.

Fans can be used for the 5th cooling sequence if configured for temperature control. The fan speed is reduced to maintain the temperature by decreasing the air flow.

Temperature controller, actuator output diagram

the sequence is used.


Further information regarding the function of the different actuators for temperature control can be found in the description of the actuators.

The diagram above does not include 'Extra cooling sequence when no cooling coil is configured'.

See chapter Fan heating/cooling influence [\rightarrow 99].

i

Setpoint and operating mode diagram

			Supply temp.
Current values	BACnet object	R/RW	Unit / Note
Supply air temperature	TSu Al,134 (B1) Al,52 (B2) Al,137 (B3)	R	°C
	AI,137 (B3) AI,138 (B4)		
Outside air temperature	TOa AI,51 (B1) AI,129 (B2) AI,130 (B3) AI,131 (B4) AVAL,719 (QBM1) AVAL,720 (QBM2)	R	°C
Present temperature setpoint	TSuAfHExg Al,145 (B1) Al,146 (B2) Al,55 (B3) Al,61 (B4) Al,77 (X8) AVAL,465 (QBM1) AVAL,649 (QBM2)	RW	°C includes weather compensation
Present setpoint shift heating	PrSpShftH AVAL,96	R	K shows winter compensation
Present setpoint shift cooling	PrSpShftC AVAL,128	R	K shows summer compensation

Air temperature control

Standard parameters	BACnet object	R/RW	Unit
Setpoint supply air temperature comfort	SpTCmf AVAL,97	RW	°C
Setpoint difference cooling for comfort	DSpCCmf AVAL,392	RW	к
Setpoint difference heating comfort	DSpHCmf AVAL,390	RW	к
Setpoint supply air temperature economy	SpTEco AVAL,296	RW	°C
Setpoint difference cooling economy	DSpCEco AVAL,306	RW	К
Setpoint difference heating economy	DSpHEco AVAL,299	RW	К
Setpoint supply air temperature unoccupied	SpTUcd AVAL,297	RW	°C
Setpoint difference cooling for unoccupied	DSpCUcd AVAL,307	RW	К
Setpoint difference for heating unoccupied	DSpHUcd AVAL,300	RW	К
Special settings	BACnet object	R/RW	Unit
TOa limitation for heating release	HLmCmf AVAL,105	RW	°C
TOa limitation for cooling release	CLmCmf AVAL,132	RW	°C
Setpoint heating protection	SpHPrt AVAL,100	RW	°C
Setpoint cooling protection	SpCPrt AVAL,129	RW	٥°
Testing and debugging	BACnet object	R/RW	State
Heating / cooling state	HCSta MVAL,128	R	1: Neither 2: Heating 3: Cooling
Delay heating cooling changeover	DlyOnHCChovr PINTVAL, 68	RW	

5.9.2 Supply air regulation with outdoor temperature compensation

During hot summer periods or cold winter times, supply air temperature setpoint may be weather compensated to increase comfort and cost-optimize the operation.

Compensation can be activated individually for summer and/or winter with dedicated supply air setpoint increase/decrease. The function is activated when positive or negative setpoint shift (points 3 and 6) is set.

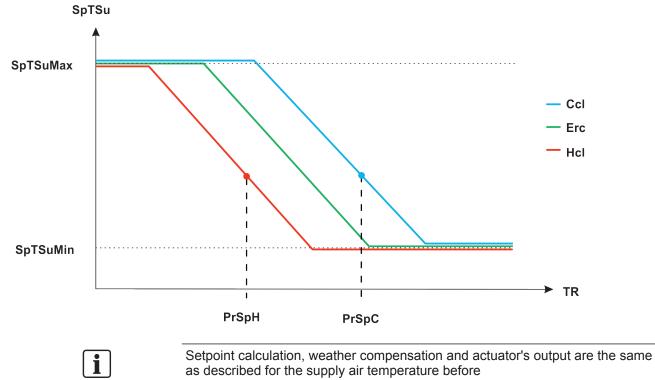
Outdoor temperature compensation is active when shift (3 or 6) is set to a value other than 0. Outdoor-compensation affects both constant and cascade temperature control.

Outdoor compensation affects the supply air temperature setpoint when used with supply air temperature control.

It affects the room or extract temperature setpoint when used with cascade temperature control.

Winter comp.

Winter compensation	BACnet object	R/RW	Note
Starting point	SttSpShftH AVAL,106 (Supply) AVAL,121 (Cascade)	RW	Compensation point 1
Ending point	EndSpShftH AVAL,107 (Supply) AVAL,122 (Cascade)	RW	Compensation point 2
Setpoint shift	SpShftH AVAL,108 (Supply) AVAL,123 (Cascade)	RW	Compensation point 3
Summer compensation	BACnet object	R/RW	Note
Summer compensation Starting point	BACnet object SttSpShftC AVAL,133 (Supply) AVAL,142 (Cascade)	R/RW	Note Compensation point 4
	SttSpShftC AVAL,133 (Supply)		


5.9.3 Extract (room) temperature cascade control (TCasCtl-H21y and TCasCtlC21y)

Cascade control is useful for controlling the room temperature in situations with strong heat fluctuations in the room, e.g. due to internal heat gains. The basic room temperature level is controlled with a standard heating system (radiator, floor heating, etc.) to its own, slightly lower setpoint value and at the same time the ventilation temperature control aims to keep the room temperature at its setpoint value by balancing the internal heat fluctuations.

In cascade control, the preset control variable is the extract temperature sensor (TEx). If TEx is not connected or a room temperature control is preferred, the room temperature TR can be selected.

Separate room/exhaust air temperature setpoints can be defined for the UNOCCUPIED, ECONOMY and COMFORT operating modes. Individual tolerances before using heating and cooling coils can be defined for UNOCCUPIED, ECONOMY and COMFORT. Special operating modes use the same setpoint as the normal operating mode shortly before activation

Depending on whether the current extract air (room) temperature TR is above or below the extract air (room) setpoint, the supply air temperature setpoint is shifted a few degrees up or down to compensate for heat gains or deficits in the rooms. Adjustable limits for maximum and minimum supply air temperature setpoint ensure that the user does not feel uncomfortable when the room is heated up or cooling down.

Determination of the supply air setpoint

Current values	BACnet object	R/RW	Unit
Extract air temperature	TEx AI,139 (B1) AI,140 (B2) AI,53 (B3) AI,59 (B4) AI,75 (X8) AVAL,312 (POS9) AVAL,463 (QBM1) AVAL,647 (QBM2)	R	°C
Room temperature	TR AI,99 (POS4420) AI,120 (POS4440) AI,103 (QMX.P70) AI,101 (QMX.P40) AI,100 (QMX.P30)	R	°C
Supply air temperature	TSu Al,134 (B1) Al,52 (B2) Al,137 (B3) Al,138 (B4)	R	°C
Outside air temperature	TOa Al,51 (B1) Al,129 (B2) Al,130 (B3) Al,131 (B4) AVAL,719 (QBM1) AVAL,720 (QBM2)	R	°C
Supply air temperature after heat exchanger	TSuAfHExg Al,145 (B1) Al,146 (B2) Al,55 (B3) Al,61 (B4) Al,77 (X8) AVAL,465 (QBM1) AVAL,649 (QBM2)	R	°C
Present temperature setpoint	SpT AVAL,598	RW	°C includes weather compensation
Present setpoint shift heating	PrSpShftH AVAL,111	R	K shows winter compensation
Present setpoint shift cooling	PrSpShftC AVAL,137	R	K shows summer compensation

Air temperature control

Standard parameters	BACnet object	R/RW	Unit
Setpoint room / extract temperature comfort	SpTCmf AVAL,112	RW	°C
Setpoint difference cooling for comfort	DSpCCmf AVAL,393	RW	к
Setpoint difference heating for comfort	DSpHCmf AVAL,391	RW	к
Setpoint room / extract temperature economy	SpTEco AVAL,301	RW	°C
Setpoint difference cooling for economy	DSpCEco AVAL,308	RW	к
Setpoint difference for heating economy	DSpHEco AVAL,304	RW	к
Setpoint room / extract temperature unoccupied	SpTUcd AVAL,302	RW	°C
Setpoint difference cooling for unoccupied	DSpCUcd AVAL,309	RW	к
Setpoint difference for heating unoccupied	DSpHUcd AVAL,305	RW	к
Max setpoint for supply air temperature	SpTSuMax AVAL,126	RW	°C
Min. setpoint for supply air temperature	SpTsuMin AVAL,125	RW	°C
Special settings	BACnet object	R/RW	Unit
TOa limitation for heating release	HLmCmf AVAL,120	RW	°C
TOa limitation for cooling release	CLmCmf AVAL,141	RW	°C
Setpoint heating protection	SpHPrt AVAL,115	RW	°C
Setpoint cooling protection	SpcPrt AVAL,138	RW	°C
Gain extract temperature control	GainTRCtr AVAL,124	RW	%/K
Tn Extract temperature control	TnTRCtr PINTVAL,74	RW	S
Use Extract temp. instead of room	EnTExCtl BVAL,159	RW	0: TR 1: TEx

98 | 188

5.9.4 Fan heating/cooling influence

These functions can be deactivated if required, for example in case of duct pressure control, see fan speed control 3.1

Extra heating sequence:

It may happen (e.g. due to device malfunction) that all activated/available heating sequences are not sufficient to reach the TSu setpoint. In this case, the speed of the exhaust and supply air fans can be reduced to introduce less cold air into the heating elements. However, when all sequences are fully active and the setpoint is still above the limits the speed is decreased to "unoccupied speed" level.

Extra cooling sequence when a cooling coil is configured:

It may happen (e.g. due to device malfunction) that all activated/available cooling sequences are not sufficient to reach the TSu setpoint. In this case, the speed of the exhaust and supply air fans can be reduced to introduce less warm air into the cooling elements. However, when all sequences are fully active and the setpoint is still above the limits the speed is decreased to "unoccupied speed" level.

Extra cooling sequence when no cooling coil is configured:

In case ventilation unit does not have any cooling coils configured, ERC cooling is not released, and the TSu setpoint cannot be reached, then speed of exhaust and supply fans is increased in order to maximize cooling effect. Fan speed deviation is held, speed is increased up to maximum parameterized ventilation level.

5.10 Energy Recovery

5.10.1 Rotational Heat Exchanger (RotHExg21y)

The purpose of energy recovery is to absorb heat/cold from the exhaust air and transfer it back to the supply air side. Energy recovery is usually used as the first heating/cooling element. The control of the energy recovery can be advantageous in the off-season depending on the required supply air temperature. Depending on the setting and temperature conditions, the energy recovery unit can also be selected so that it is only used for heating or for heating and cooling.

ERC is an active element that uses 0..10 V signal for wheel speed control. To limit the PI control of the acceleration and deceleration of the ERC speed too slow or too fast, the ramp-up/ ramp-down time can be set.

When configured, the bypass damper is automatically used to reduce the system pressure differential at times when ERC is off (< 1% speed). The delay time to activate the bypass after ERC is 1 min (fixed).

Current values	BACnet object	R/RW	Note
ERC speed	RotHExgSpd	RW	%
Prio2: Fire / Smoke	AO,106 (A1)		
Prio5: Protection	AO,115 (A2)		
	AO,124 (A3)		
	AO,133 (A4)		
	AVAL,385 (POS9)		
	AVAL,474 (QBM1AO1)		
	AVAL,481 (QBM1AO2)		
	AVAL,655 (QBM2AO1)		
	AVAL,662 (QBM2AO2)		
External fault detection for ERC	RotHExgFlt	R	
	BI,110 (X3)		
	BI,127 (X8)		
	BI,76 (D1 NO)		
	BI,93 (D2 NO)		
	BI,158 (D1 NC)		
	BI,159 (D2 NC)		
Bypass damper	HExgDmpBypCmd	RW	%
Prio2: Fire / Smoke	BO,55 (Q1)		
Prio5: Protection	BO,70 (Q2)		
	BO,85 (Q3)		
	BVAL,246 (POS9)		
Setpoint supply air temperature for heating	SpTSuHHExg	R	°C
	AVAL,159		
Setpoint supply air temperature for cooling	SpTSuCHExg	R	°C
	AVAL,160		
Heat exchanger heating / cooling state	HExgEcmSta	RW	0: Heating
Prio 8, 13: manual override	BVAL,181		1: Cooling
Prio 15: automatic change			
Basic settings	BACnet object	R/RW	Note
Minimum ERC speed	RotHExgSpdMin	RW	%
	AVAL,162		

Special settings	BACnet object	R/RW	Note
Ramp up/down time, ERC speed	TiRmpRotHExg	RW	S
	PINTVAL,83		
ERC Kp	GainHExgCtr	RW	%/K
	AVAL,165		
ERC Tn	TnHExgCtr	RW	S
	PINTVAL,85		
Min.diff.room temp./outs.air temp.f.cool	DiffTRTOaMinC	RW	К
	AVAL,164		
Testing and debugging	BACnet object	R/RW	Note
Heat exchanger device mode	HExgDevMod	RW	1: Off
Prio 2: Fire / Smoke	MVAL,145		2: Control mode
Prio 4: Protection stuck / broken			3: Max speed
Prio 5: Protection plant control			4: Min speed
			5: Bypass only

5.10.1.1 ERC De-Icing (rotational)

Active Energy ReCovery units are essentially heat exchangers. They receive warm and humid air on one side and cold air on the other. Under suitable conditions this can lead to cumulations of ice on the surface.

Detecting ice on the heat exchanger or in the ductwork

Detecting ice on the heat exchanger or in the duct work is possible by:

- with the exthaust air temperature sensor TEh. This is not a real indicator, but an expectation that ice will form.
 - De-icing with TEh sensor starts when TEh is below the limit.
 - The end of the de-icing phase cannot be detected and is estimated via timer.
- with a differential pressure switch over the heat exchanger. This possibility does not detect icethat has built up in the duct work and does not work reliably on all types of heat exchangers. If the exhaust air temperature sensor and differential pressure switch are installed, the differential pressure switch is used to start de-icing.
 - De-icing is active as long as the differential pressure switch is active.
- with the outside air sensor TOa. This is used when no exhaust air sensor and no differential pressure switch are available. It is also only an expectation that ice has formed.
 - De-icing with TOa sensor starts when TOa is below the limit.
 - The end of the de-icing phase cannot be detected and is estimated via timer.

De-icing the heat exchanger

De-icing is possible by:

- reducing the speed of the heat recovery, so that the exhaust temperature increases.
- reducing the supply fan speed, so that the load of incoming cold air is reduced, increasing the exhaust air temperature.
- PI control exhaust temperature to maintain a mimimum exhaust temperature
- preheating the outside air, increasing the exhaust air temperature

De-icing modes

The de-icing mode can be configured as:

- No de-icing
- Reduce ERC speed to a fix value
- Reduce ERC and fan speed
- Reduce ERC speed and increase preheating
- Reduce ERC speed and fan speed and inrcease preheating
- ERC maintain minimum exhaust temperature
- Maintain exhaust temperature and reduce fan speed
- Maintain exhaust temperature and increase preheating
- Maintain exhaust temperature, reduce fan speed and increase preheating
 being with EBC and with analysis are surging in appellet. Do ining with fan

De-icing with ERC and with preheater are running in parallel. De-icing with fan speed is running in parallel or with 2 stage, see below.

Time based de-icing started by TEh or TOa

The sensor is not suitable for detecting the end of the de-icing phase. Therefore, a fix de-icing time is used. After de-icing is finished, an off time is started until the next de-icing phase can be started again. The duration of the off time depends on the measured temperature at the start of a de-icing phase. De-icing time, maximum off time with assigned temperature and minimum off time with assigned temperature can be configured.

Humidity influence for TEh or TOa

If an extract air humidity sensor is available, the de-icing limit can be lowered, because icing is reduced due to dry extract air. Configured de-icing limit refers to a room / extract humidity value of 80% or higher. This value will be reduced continuously by a configurable temperature drop until the room / extract humidity value reaches 20% or lower.

De-icing with increased preheating

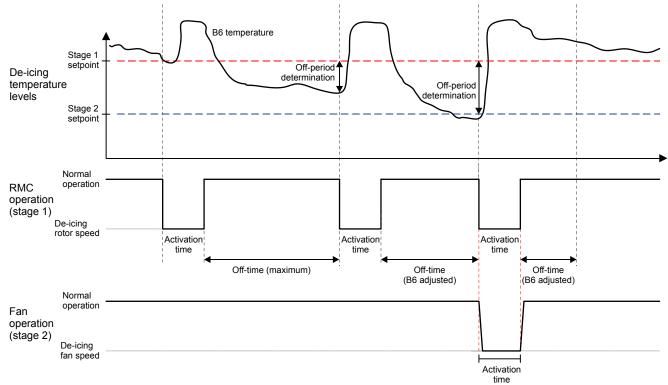
In case of possible de-icing, brine coil or ground collector are activated by the outside air conditions. So they automatically assist the de-icing process.

Preheating with electric heater can be used to assist de-icing. This reduces the efficiency of the heat recovery and uses electrical energy instead. Especially when no reheating is available, it is recommended to use the electric preheater, as otherwise reduced heat exchanger function will result in very low supply air temperature.

As for normal preheating control, TSuAfPreHcl sensor is used. Electrical heater is modulated to reach SpPreHDeicng setpoint. The preheater control runs in this mode until de-icing is finished and switches back to normal operation running with normal setpoint.

De-icing with reduced ERC speed

During de-icing, the speed of the ERC is reduced down to a configurable value.


De-icing with reduced fan speed started by differential pressure switch

During de-icing fan speed for supply fan and exhaust fan are reduced to configurable values. For faster de-icing, it is possible to set the supply fan speed setpoint even to 0%. In this case electric heaters in the supply air are blocked.

De-icing with reduced fan speed started by TEh or TOa

The temperatures have 2 adjustable limits. The higher limit (stage 1) starts de-icing with ERC only, while the lower limit (stage 2) starts de-icing with ERC and fan speed in parallel (2 stage approach).

During de-icing, fan speed for supply fan and exhaust fan are reduced to configurable values. For faster de-icing, it is possible to set the supply fan speed setpoint even to 0%. In this case electric heaters in the supply air are blocked.

Example diagram of stage 1 and stage 2 behavior

Actual values	BACnet object	R/RW	Note
De-icing request for heat exchanger	DeicReqHExg	R	
	BVAL,182		
De-icing request for fan	DeicReqFan	R	
	BVAL,183		
Heat exchanger differential pressure	HExgDiffPMon	R	
monitor	BI, 77 (D1 NO)		
	BI, 160 (D1 NC)		
	BI, 94 (D2 NO)		
	BI, 161 (D2 NC)		
	BI, 111 (X3)		
	BI, 128 (X8)		

Energy Recovery

Basic settings	BACnet object	R/RW	Note
De-icing mode configuration	DeicModCnf MVAL,408	RW	1: None 2: Erc fix 3: Erc fix + Fans 4: Erc fix + Preh 5: Erc fix + Preh 6: Erc TEh 7: Erc TEh + Fans 8: Erc TEh + Preh 9: Erc TEh + Fans + Preh
De-icing, stage1 limit, heat exchanger	SpTDeicHExg AVAL,177	RW	°C
De-icing, stage2 limit, fan	SpTDeicFan AVAL,173	RW	°C
Activation time de-icing	TiDeic PINTVAL,90	RW	sec.
De-icing rotor speed	HExgSpdDeic AVAL,178	RW	%
De-icing supply fan flow	SpAirFISuDeic AVAL,181	RW	m3/h
De-icing exhaust fan flow	SpAirFIEhDeic AVAL,226	RW	m3/h
De-icing supply fan pressure	SpPSuDeic AVAL,196	RW	Pa
De-icing exhaust fan pressure	SpPExDeic AVAL,232	RW	Ра
De-icing supply fan speed	SpFanSuSpdDeic AVAL,208	RW	%
De-icing exhaust fan speed	SpFanEhSpdDeic AVAL,238	RW	%
Special settings	BACnet object	R/RW	Note
Temperature drop for room extract humidity of 20% r.h.	DiffTHuCmpDeic AVAL,176	RW	к
Temperature for maximum off time	TDeicTiOffStt AVAL,179	RW	°C
Maximum off time	TiOffDeicMax PINTVAL,91	RW	sec.
Temperature for minimum off time	TDeicTiOffEnd AVAL,180	RW	°C
Minimum off time	TiOffDeicMin PINTVAL,92	RW	sec.

5.10.1.2 ERC supervision (rotational)

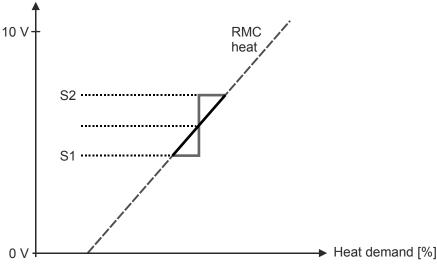
A mechanical failure on the ERC (e.g. belt broken, wheel stuck, heat exchanger dirty etc) can be detected via the efficiency of the heat exchanger. For this, the temperature difference between extract air / room air and exhaust air is used. If the difference drops below set value and stays below during set delay time, an alarm is triggered.

The detection function is only active if the temperature difference between outside air and extract air exceeds the set limit value and the actual ERC control signal is more than 95 % (fixed) of the set maximum speed. An electrical failure of the ERC can be detected via BI signal.

Extract or room temperature sensor and exhaust temperature sensor are mandatory for efficiency supervision

When extract air temperature and exhaust air temperature or the fault signal are not available, the supervision of the ERC is not possible. The alarm class of these alarms can be configured as A-Alarm, B-Alarm or none.

Actual values	BACnet object	R/RW	Note
Heat exchanger fault	RotHExgFlt	R	
	BI,110 (X3)		
	BI,127 (X8)		
	BI,76 (D1 NO)		
	BI,93 (D2 NO)		
	BI,158 (D1 NC)		
	BI,159 (D2 NC)		
Basic settings for efficiency alarm	BACnet object	R/RW	Note
Basic settings for efficiency alarm Min difference between extract and outside air	BACnet object DiffTExTOaMin	R/RW RW	Note K
	-		
Min difference between extract and outside air	DiffTExTOaMin		
Min difference between extract and outside air temperature	DiffTExTOaMin AVAL,169	RW	K
Min difference between extract and outside air temperature Min difference between extract and exhaust	DiffTExTOaMin AVAL,169 TDHExgTErr	RW	K


Rotating heat exchanger – Skip speed function

In some situations, ERC may cause vibrations or harmful sounds in a certain speed-range. One skip-speed range can be defined with start and stop limits [%, resolution 0.1] to prevent the control signal from staying in this harmful range longer than ramp up/down times define.

When the function control output signal increases up to start limit S1, the corresponding analog output will be put "on hold". After the internal control output signal has reached the calculated middle point of the skip speed area analog output signal will increase up to the end limit S2 speed. Analog output signal increase will be limited by max ramp-up limitation. Analog output signal may stay at the higher value for a while and continue to increase after internal control signal has reached the end limit value S2 also.


When the control signal comes down, the function works in the opposite direction. Same function is active also when ERC is used for cooling.

The function can be deactivated by setting start and end settings as zero.

Basic settings	BACnet object	R/RW	Note
Skip-speed start	RotHxSkipSpdLo AVAL,172	RW	Setpoint S1
Skip-speed end	RotHxSkipSpdHi AVAL,171	RW	Setpoint S2

ERC efficiency calculation

5.10.2 Passive Heat Exchanger, controlled (PltHExg21y)

	The purpose of energy recovery is to absorb heat/cold from the exhaust air and transfer it back to the supply air side. Energy recovery is usually used as the first heating/cooling element. The control of the energy recovery can be advantageous in the off-season depending on the required supply air temperature. Since the passive heat exchanger itself cannot be modulated, a bypass damper (open/closed or modulating) is used to control the supply air temperature.
	Be aware, that the bypass damper closed position means maximum heat exchange while open position means no heat exchange.
	Depending on settings and prevailing temperature conditions, energy recovery unit may also be selected to be used only heating or cooling energy recovery.
	If the bypass damper is equipped with a binary output, it is closed, when the controller output raises above 60% and opened when the controller output falls below 30% (fix values).
Specific functionality for piston air dampers	Until now normal and 010 V dampers were supported. Now also piston air dampers can be controlled.
	This function controls a thermal actuator for a free cooling bypass damper. Both relays Q1 and Q2 are used: When one relay opens, the second is always off, i.e. they never operate simultaneously.
	Specific operation sequence:
	To open the bypass, relay Q1 closes and the motor piston is powered for 150 seconds, the bypass is considered completely open and the relay is deactivated.
	To close the bypass, relay Q2 closes and the motor is powered for 150 seconds, the bypass is considered completely open and the relay is deactivated.
	To avoid overheating the bypass motor, the relays are not activated again for 300

To avoid overheating the bypass motor, the relays are not activated again for 300 seconds to allow the piston motor to cool down.

Current values		BACnet object		R/F	RM	Note
Heat exchanger bypass damper position	s damper position HExgDmpBypPos			RW	1	%
Prio2: Fire / Smoke		AO,105 (A1)				
Prio4: Heat exchanger fault		AO,114 (A2)				
Prio5: Protection		AO,123 (A3)				
		AO,132 (A4)				
		AVAL,384 (POS9)				
		AVAL,473 (QBM1AO1)				
		AVAL,480 (QBM1AO2)				
		AVAL,654 (QBM2AO1)				
		AVAL,661 (QBM2AO2)				
Heat exchanger bypass damper command		HExgDmpBypCmd BO,55 (Q1)		RW	/	0: closed, 1:
Prio2: Fire / Smoke		BO,70 (Q2)				opened
Prio4: Heat exchanger fault		BO,85 (Q3)				
Prio5: Protection		BVAL,246 (POS9)				
		BVAL,353 (Piston)				
Heat exchanger bypass piston damper Open		HExgDmpbCmdOpn		RW	/	Prio5
		BO,104 (Q1)				
Heat exchanger bypass piston damper Close		HExgDmpbCmdCls		RW	/	Prio5
		BO,105 (Q2)				
Setpoint supply air temperature for heating		SpTSuHHexg,		R		°C
		AVAL,355				
Setpoint supply air temperature for cooling		SpTSuCHexg,		R		°C
		AVAL, 356				
Special settings	BACnet	t object	R/RW		Note	
ERC heating / cooling selection	HExgEc	cmSta	RW		0: Heatir	ng only

Special settings	BACnet object	R/RW	Note
ERC heating / cooling selection	HExgEcmSta	RW	0: Heating only
Prio 15 : automatic selection	BVAL,304		1: Cooling only
ERC Kp	GainHExgCtr	RW	% / K
	AVAL,359		
ERC Tn	TnHExgCtr	RW	s
	PINTVAL,140		
Min.diff.room temp./outs.air temp.f.cool	DiffTRTOaMinC	RW	К
	AVAL,358		
		1	
Testing and debugging	BACnet object	R/RW	Note
Testing and debugging Heat exchanger device mode	BACnet object HExgDevMod	RW	Note 1: Off
Heat exchanger device mode	HExgDevMod		1: Off
Heat exchanger device mode Prio2: Fire / Smoke	HExgDevMod		1: Off 2: Control mode
Heat exchanger device mode Prio2: Fire / Smoke	HExgDevMod		1: Off 2: Control mode 3: Maximum

5.10.2.1 ERC De-Icing (passive, controlled)

Passive Energy ReCovery units are basically just heat exchangers. They receive warm and humid air on one side and cold on the other which will eventually cumulate ice on the surfaces when the conditions are suitable for that. Passive element usually starts to cumulate ice already close to zero Celsius degree

Detecting ice on the heat exchanger or in the ductwork

Detecting ice on the heat exchanger or in the ductwork is possible:

- with exthaust air temperature sensor TEh. This is not a real indication, but an expectation that ice is expected to build up.
 Deicing with TEh sensor starts when TEh is below the limit.
 The end of the de-icing phase cannot be detected and is estimated via timer.
- with a differential pressure switch over the heat exchanger. This possibility
 does not detect ice built up in the ductwork and does not safely work on all
 types of heat exchanger. If exhaust air temperature sensor and differential
 pressure switch are installed, the differential pressure switch is used to start
 de-icing.
 - Deicing is active as long as the differential pressure switch is active.
- with outside air sensor TOa. This is used when no exhaust air sensor and no differential pressure switch are available. It is also only an expectation that ice has built up.
 - Deicing with TOa sensor starts when TOa is below the limit.
 - The end of the de-icing phase cannot be detected and is estimated via timer.

De-icing the heat exchanger

De-icing is possible by:

- Opening the bypass damper, so that the exhaust temperature increases
- Reducing the supply fan speed, so that the load of cold air incoming is reduced, increasing the exhaust air temperature.
- PI control exhaust temperature to maintain a minimum exhaust temperature
- Preheating the outside air, increasing the exhaust air temperature

De-icing modes

The deicing mode can be configured as:

- No deicing
- Increase bypass damper position to a fix value
- Increase damper and reduce fan speed
- Increase damper and increase preheating
- Increase damper, reduce fan speed and increase preheating
- ERC maintain minimum exhaust temperature *
- Maintain exhaust temperature and reduce fan speed *
- Maintain exhaust temperature and increase preheating *
- Maintain exhaust temperature, reduce fan speed and increase preheating*

*: Modes shall not be used if the damper is equipped with open / close control. Deicing with ERC and with preheater are running in parallel. Deicing with fan speed is running in parallel or with 2 stage, see below.

Time based De-icing started by TEh or TOa

The sensor is not suitable for detecting the end of the deicing phase. Therefore, a fix deicing time is used. After deicing is finished, an off time is started until the next deicing phase can be started again. The duration of the off time depends on the measured temperature at the start of a deicing phase. Deicing time, maximum off time with assigned temperature and minimum off time with assigned temperature can be configured.

Humidity influence for TEh or TOa

If an extract air humidity sensor is available, the de-icing limit can be lowered, because icing is reduced due to dry extract air. Configured de-icing limit refers to a room / extract humidity value of 80% or higher. This value will be reduced continuously by a configurable temperature drop until the room / extract humidity value reaches 20% or lower.

De-icing with increased preheating

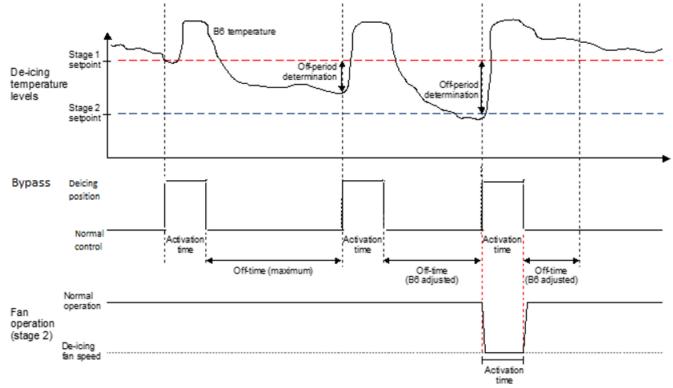
In case of possible de-icing, brine coil or ground collector are activated by the outside air conditions. So they automatically assist the de-icing process.

Preheating with electric heater can be used to assist de-icing. This reduces the efficiency of the heat recovery and uses electrical energy instead. Especially when no preheating is available, it is recommended to use the electric preheater, as otherwise reduced heat exchanger function will result in very low supply air temperature.

As for normal preheating temperature control, TSuAfPreHcl sensor is used. Electrical heater is modulated to reach SpPreHDeicng setpoint. The preheater control runs in this mode until de-icing is finished and switches back to normal operation running with normal setpoint.

De-icing by increasing the bypass damper position

During deicing, the bypass damper is opened to a configurable value. For open/ close controlled dampers, the value should be set to 100%.


De-icing by reducing fan speed started by differential pressure switch

During deicing the bypass damper, fan speed for supply fan and exhaust fan are set to configurable values. For faster deicing, it is possible to set the supply fan speed setpoint even to 0%. In this case electric heaters in the supply air are blocked.

De-icing with reduced fan speed started by TEh or TOa

The temperatures have 2 adjustable limits. The higher limit SpTDeicHExg (stage 1) starts deicing with the bypass damper only, while the lower limit SpTDeicFan(stage 2) starts deicing with bypass damper and fan speed in parallel (2 stage approach).

During deicing, fan speed for supply fan and exhaust fan are reduced to configurable values. For faster deicing, it is possible to set the supply fan speed setpoint even to 0%. In this case electric heaters in the supply air are blocked.

Example diagram of stage 1 and stage 2 behavior

Actual values	BACnet object	R/RW	Note
Deicing request for heat exchanger	DeicReqHExg	R	
	BVAL,305		
Deicing request for fan	DeicReqFan	R	
	BVAL,306		
Heat exchanger differential pressure	HExgDiffPMon	R	
monitor	BI, 77 (D1 NO)		
	BI, 160 (D1 NC)		
	BI, 94 (D2 NO)		
	BI, 161 (D2 NC)		
	BI, 111 (X3)		
	BI, 128 (X8)		

Energy Recovery

5

Basic settings	BACnet object	R/RW	Note
De-icing mode configuration (for differential pressure indication only)	DeicModCnf MVAL,410	RW	1: None 2: Erc fix 3: Erc fix + Fans 4: Erc fix + Preh 5: Erc fix + Preh 6: Erc TEh 7: Erc TEh + Fans 8: Erc TEh + Preh 9: Erc TEh + Fans + Preh
De-icing, stage1 limit, heat exchanger only	SpTDeicHExg AVAL,367	RW	٦°
De-icing, stage2 limit, fan	SpTDeicFan AVAL,363	RW	°C
Activation time deicing	TiDeic PINTVAL,142	RW	sec.
De-icing bypass damper position	HxDmpbPosDeic AVAL,368	RW	% , for open damper configure 100%
De-icing supply fan flow	SpAirFISuDeic AVAL,181	RW	m3/h
De-icing exhaust fan flow	SpAirFIEhDeic AVAL,226	RW	m3/h
De-icing supply fan pressure	SpPSuDeic AVAL,196	RW	Ра
De-icing exhaust fan pressure	SpPExDeic AVAL,232	RW	Ра
De-icing supply fan speed	SpFanSuSpdDeic AVAL,208	RW	%
De-icing exhaust fan speed	SpFanEhSpdDeic AVAL,295	RW	%
Special settings	BACnet object	R/RW	Note
Temperature drop for room / extract humidity <= 20%	DiffTHuCmpDeic AVAL,366	RW	К
Temperature for maximum off time	TDeicTiOffStt AVAL,369	RW	°C
Maximum off time	TiOffDeicMax PINTVAL,143	RW	sec.
Temperature for minimum off time	TDeicTiOffEnd AVAL,370	RW	٦°
Minimum off time	TiOffDeicMin PINTVAL,144	RW	sec.

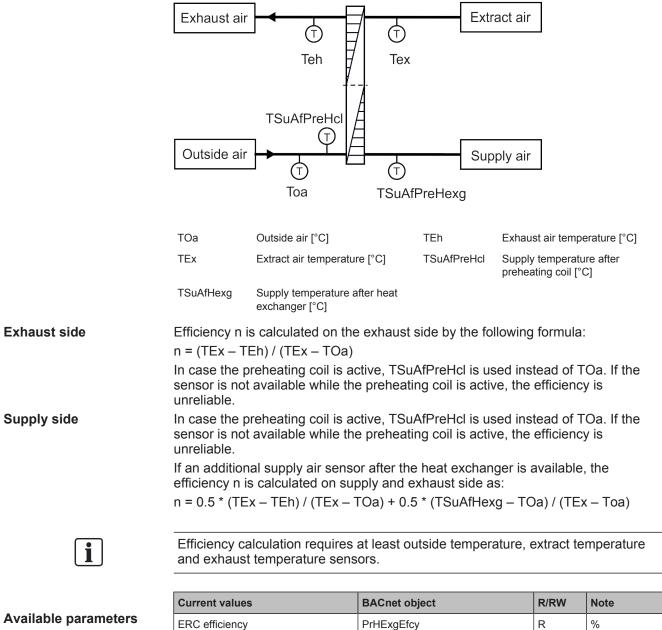
5.10.2.2 ERC supervision (passive, controlled)

A mechanical failure on the ERC (e.g. bypass damper blocked, heat exchanger dirty etc.) can be detected via the efficiency of the heat exchanger. Therefore, the temperature difference between extract air / room air and exhaust air is used. When the difference drops below set value and stays below during set delay time, alarm is generated.

The detection function is only active if the temperature difference between fresh air and extract air exceeds the set limit value and the actual position of the bypass damper is more than 95 % (fixed).

Extraction or room temperature sensor and exhaust gas temperature sensor are mandatory for efficiency monitoring.

If the exhaust air temperature and the exhaust air temperature are not available, monitoring of the ERC is not possible.


The error message of the condenser pump can be configured for the unit.

The pump itself operates autonomously and does not require its own logic. The resulting error message must be connected to a digital, potential-free input on the controller. When an error message is received, the bypass damper is closed.

The alarm class of these alarms can be configured as A-alarm, B-alarm or none.

Actual values	BACnet object	R/RW	Note
Heat exchanger condensation monitoring	HExgCdnMon	R	off/on
	BI,75 (D1 NO)		
	BI,160 (D1 NC)		
	BI,92 (D2 NO)		
	BI,161 (D2 NC)		
	BI,109 (X3)		
	BI,126 (X8)		
	1		
Basic settings for efficiency alarm	BACnet object	R/RW	Note
Basic settings for efficiency alarm Min difference between extract and outside air temperature	BACnet object DiffTExTOaMin	R/RW	Note K
,	-		
,	DiffTExTOaMin		
Min difference between extract and outside air temperature	DiffTExTOaMin AVAL,362	RW	К
Min difference between extract and outside air temperature	DiffTExTOaMin AVAL,362 TDHExgTErr	RW	К

ERC efficiency calculation

AVAL,357

5.10.3 Passive Heat Exchanger, uncontrolled (PltHExg22y)

The purpose of energy recovery is to absorb heat/cold from the exhaust air and transfer it back to the supply air side.

The control of the energy recovery is not possible, the ERC always works with maximum capacity. With this solution, the outside air cannot be used for heating or cooling even if the outside air is closer to the setpoint than the exhaust air (e.g. in rooms with a high internal load or when heating up after cold nights).

5.10.3.1 ERC De-Icing (passive, uncontrolled)

Passive Energy Recovery units are essentially heat exchangers. They receive warm and humid air on one side and cold on the other which will eventually cumulate ice on the surfaces when the conditions are suitable for that. Passive element usually starts to cumulate ice already close to zero Celsius degree.

Detecting ice on the heat exchanger or in the ductwork

Detecting ice on the heat exchanger or in the ductwork is possible:

- With exhaust air temperature sensor TEh. This is not a real indication, but an expectation that ice is expected to build up.
 - Deicing with TEh sensor starts when TEh is below the limit.
 - The end of the de-icing phase cannot be detected and is estimated via timer.
- With a differential pressure switch over the heat exchanger. This possibility does not detect ice built up in the ductwork and does not safely work on all types of heat exchanger. If exhaust air temperature sensor and differential pressure switch are installed, the differential pressure switch is used to start de-icing.
 - Deicing is active as long as the differential pressure switch is active.
- With outside air sensor TOa. This is used when no exhaust air sensor and no differential pressure switch are available. It is also only an expectation that ice has built up.
 - Deicing with TOa sensor starts when TOa is below the limit.
 - The end of the de-icing phase cannot be detected and is estimated via timer.

De-icing the heat exchanger

De-icing is possible by:

- 1. Reducing the supply fan speed, so that the load of cold air incoming is reduced, increasing the exhaust air temperature.
- 2. Preheating the outside air, increasing the exhaust air temperature

De-icing modes

The deicing mode can be configured as:

- No deicing
- Reduce fan speed
- Increase preheating
- Reduce fan speed and increase preheating

Deicing with fan speed is running in parallel or with 2 stage, see below.

Time based Deicing started by TEh or TOa

The sensor is not suitable for detecting the end of the deicing phase. Therefore, a fix deicing time is used. After deicing is finished, an off time is started until the next deicing phase can be started again. The duration of the off time depends on the measured temperature at the start of a deicing phase. Deicing time, maximum off time with assigned temperature and minimum off time with assigned temperature can be configured.

Humidity influence for TEh or TOa

If an extract air humidity sensor is available, the de-icing limit can be lowered, because icing is reduced due to dry extract air. Configured de-icing limit refers to a room / extract humidity value of 80% or higher. This value will be reduced continuously by a configurable temperature drop until the room / extract humidity value reaches 20% or lower.

Deicing with increased preheating

In case of possible de-icing, brine coil or ground collector are activated by the outside air conditions. So they automatically assist the de-icing process.

Preheating with electric heater can be used to assist de-icing. This reduces the efficiency of the heat recovery and uses electrical energy instead. Especially when no reheating is available, it is recommended to use the electric preheater, as otherwise reduced heat exchanger function will result in very low supply air temperature.

As for normal preheating control, TSuAfPreHcl sensor is used. Electrical heater is modulated to reach SpPreHDeicng setpoint. The preheater control runs in this mode until de-icing is finished and switches back to normal operation running with normal setpoint.

Deicing by with reduced fan speed started by differential pressure switch

During deicing fan speed for supply fan and exhaust fan are set to configurable values. For faster deicing, it is possible to set the supply fan speed setpoint even to 0%. In this case electric heaters in the supply air are blocked.

Deicing with reduced fan speed started by TEh or TOa

The temperatures have 2 adjustable limits. The higher limit SpTDeicHExg (stage 1) starts deicing with the bypass damper only, while the lower limit SpTDeicFan (stage 2) starts deicing with bypass damper and fan speed in parallel (2 stage approach).

During deicing, fan speed for supply fan and exhaust fan are reduced to configurable values. For faster deicing, it is possible to set the supply fan speed setpoint even to 0 %. In this case electric heaters in the supply air are blocked.

Actual values	BACnet object	R/RW	Note
Deicing request for fan	DeicReqFan	R	
	BVAL,308		
Heat exchanger differential pressure	HExgDiffPMon	R	
monitor	BI, 77 (D1 NO)		
	BI, 160 (D1 NC)		
	BI, 94 (D2 NO)		
	BI, 161 (D2 NC)		
	BI, 111 (X3)		
	BI, 128 (X8)		
Basic settings	BACnet object	R/RW	Note
De-icing mode configuration	DeicModCnf	RW	1: None
	MVAL,411		2: Not used
			3: Fans
			5. I alis
			4: Preh
De-icing, stage1 limit, preheat only	SpTDeicHExg	RW	4: Preh
De-icing, stage1 limit, preheat only	SpTDeicHExg AVAL,378	RW	4: Preh 5: Fans + Preh
De-icing, stage1 limit, preheat only De-icing, stage2 limit, fan		RW	4: Preh 5: Fans + Preh

Basic settings	BACnet object	R/RW	Note
Activation time deicing	TiDeic PINTVAL,146	RW	sec.
De-icing supply fan flow	SpAirFISuDeic AVAL,181	RW	m3/h
De-icing exhaust fan flow	SpAirFIEhDeic AVAL,226	RW	m3/h
De-icing supply fan pressure	SpPSuDeic AVAL,196	RW	Ра
De-icing exhaust fan pressure	SpPExDeic AVAL,232	RW	Pa
De-icing supply fan speed	SpFanSuSpdDeic AVAL,208	RW	%
De-icing exhaust fan speed	SpFanEhSpdDeic AVAL,295	RW	%
Special settings	BACnet object	R/RW	Note
Temperature drop for room / extract humidity <= 20%	DiffTHuCmpDeic AVAL,376	RW	к
Temperature for maximum off time	TDeicTiOffStt AVAL,379	RW	°C
Maximum off time	TiOffDeicMax PINTVAL,147	RW	sec.
Temperature for minimum off time	TDeicTiOffEnd AVAL,380	RW	°C
Minimum off time	TiOffDeicMin PINTVAL,148	RW	sec.

5.10.3.2 ERC supervision (passive, uncontrolled)

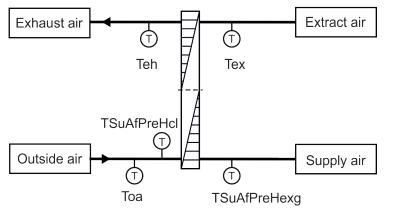
A mechanical failure on the ERC (heat exchanger dirty etc.) can be detected via the efficiency of the heat exchanger. Therefore, the temperature difference between extract air / room air and exhaust air is used. When the difference drops below set value and stays below during set delay time, alarm is generated.

Detection function is active only when temperature difference between outside air and extract air is more set limit.

When extract air temperature and exhaust air temperature are not available, the supervision of the ERC is not possible.

Condenser pump fault signal can be configured to the unit.

Pump itself works autonomous and does not require any own logic. The fault signal from this shall be connected to a digital potential free input at the controller. When fault signal is received, bypass damper is closed.


The alarm class of these alarms can be configured as A-Alarm. B-Alarm or none.

Energy Recovery

Available parameters

Actual values	BACnet object	R/RW	Note
Heat exchanger condensation monitoring	HExgCdnMon	R	
	BI,75 (D1 NO)		
	BI,160 (D1 NC)		
	BI,92 (D2 NO)		
	BI,161 (D2 NC)		
	BI,109 (X3)		
	BI,126 (X8)		
Basic settings for efficiency alarm	BACnet object	R/RW	Note
Min difference between extract and outside air	DiffTExTOaMin	RW	к
temperature	AVAL,382		
Min difference between extract and exhaust	TDHExgTErr	RW	К
temperature	AVAL,381		
	TIDIULIEurTErr	RW	sec.
Efficiency supervision delay time	TiDlyHExgTErr		300.

ERC efficiency calculation

ТОа	Outside air [°C]	TEh	Exhaust air temperature [°C]
TEx	Extract air temperature [°C]	TSuAfPreHcl	Supply temperature after preheating coil [°C]

TSuAfHexg Supply temperature after heat exchanger [°C]

Exhaust side	Efficiency n is calculated on the exhaust side by the following formula: n = (TEx - TEh) / (TEx - TOa) In case the preheating coil is active, TSuAfPreHcl is used instead of TOa. If the sensor is not available while the preheating coil is active, the efficiency is unreliable.
Supply side	If an additional supply air sensor after the heat exchanger is available, the efficiency n is calculated on supply and exhaust side as: n = 0.5 * (TEx – TEh) / (TEx – TOa) + 0.5 * (TSuAfHexg – TOa) / (TEx – TOa)
i	Efficiency calculation requires at least outside temperature, extract temperature and exhaust temperature sensors.

Available parameters

Current values	BACnet object	R/RW	Note
ERC efficiency	PrHExgEfcy	R	%
	AVAL,372		

5

5.11 Heating

An additional heater is used when the ERC is not available for heating or is available for heating but has reached its maximum position. To release the heating, the supply air temperature must fall below the setpoint - heating difference.

The heating is supported by preheating if possible, but preheating functions are not included in the supply air temperature sequence.

5.11.1 Water based heating with frost protection (HclHw21y)

If ERC cannot maintain the supply air temperature setpoint, water heating coil can be activated and controlled as second heating sequence.

After activation, heating coil pump is activated and heating coil valve is controlled to keep the supply air temperature at its setpoint. During normal operation the pump runs depending on the valve position (fix switching on point 5%), when the plant is switched off, the pump is continuously running to ensure reliable measuring oft the return temperature.

Current value	BACnet object	R/RW	Unit
Supply setpoint for heating coil	SpTSuHcl	RW	°C
	AVAL,215		
Return temperature value	TFrPrtHcl	R	°C
	AI,152 (B1)		
	AI,153 (B2)		
	AI,58 (B3)		
	AI,64 (B4)		
	AI,80 (X8)		
	AVAL,317 (POS9)		
	AVAL,468 (QBM1)		
	AVAL,652 (QBM2)		
Heating valve position	HclVlvPos	RW	%
Prio2: Fire / Smoke	AO,108 (A1)		
Prio5: Protection Frost / plant control	AO,117 (A2)		
	AO,126 (A3)		
	AO,135 (A4)		
	AVAL,387 (POS9)		
	AVAL,476 (QBM1AO1)		
	AVAL,483 (QBM1AO2)		
	AVAL,657 (QBM2AO1)		
	AVAL,664 (QBM2AO2)		
Heating pump status	HclPuCmd	RW	
Prio2: Fire / Smoke	BO,57 (Q1)		
Prio5: Protection Frost / plant control	BO,72 (Q2)		
	BO,87 (Q3)		
	BVAL,248 (POS9)		
Special settings	BACnet object	R/RW	Unit
Heater Kp	GainHclTSuCtrH	RW	% / K
	AVAL,221		
Heater Tn	TnHclTSuCtrH	RW	sec.
	PINTVAL,110		

Testing and debugging	BACnet object	R/RW	Unit
Heating coil device mode	HclDevMod		1: Off with idle frost
Prio 2: Fire / Smoke	MVAL,154		2: Control Mode
Prio 5: Protection from plant control			3: Full Open
			4: Off with runtime frost

Water coil frost protection

Frost protection function while unit is in operation

To always minimize the risk of freezing of the water heating coil, 2-stage frost protection and additional idle time frost protection functions are available.

The application uses a two-stage antifreeze with 2 special setpoints, which is intended to prevent freezing while the ventilation is still normally active, and to protect the device when prevention has not been sufficient. The temperature sensor TFrPrtHcl is required for this function and must be located at the coldest point of the water heating coil.

Stage 1 - Frost risk:

If the temperature of TFrPrtHcl falls below the set frost risk setpoint (e.g. 10°C), the pump is switched on (if not already switched on) and the valve is controlled according to the temperature of TFrPrtHcl at risk of frost. When the temperature of TFrPrtHcl reaches the frost hazard set point, the frost protection function is automatically terminated.

Stage 2 – Frost protection:

If the temperature at TFrPrtHcl falls below the set frost protection setpoint (e.g. 4°C), the pump is switched on (if not already switched on), the valve is opened 100%, the ventilation is switched off, any fresh air dampers are closed and the A alarm is activated.

A restart can only take place, after the alarm is acknowledged, the temperature is higher than SpFrPltOnHcl and the plant is reset.

During the times when the ventilation unit is switched off for any reason (must still be connected to power supply), the temperature of TFrPrtHcl has an additional setpoint (e.g. +25°C) to secure the start-up situation. If the heating coil is constantly kept warm, it will not drop to the frost protection limit during start-up, even in cold outdoor conditions.

The pump runs constantly during the non-productive times of the ventilation unit. If the temperature of TFrPrtHcl falls below the set temperature limit during the device failure times, the valve is PI-controlled to reach the idle setpoint. The alarm is not activated until the temperature at the TFrPrtHcl drops below the frost protection set point.

If one of the frost protection parts is active, the standard temperature control has no priority (constant or cascaded).

Frost protection while the unit is not in

operation

The function is activated automatically when HclHw11y is commissioned.

Heating

Current value	BACnet object		R/RW	Note
Return temperature setpoint for frost	SpFrPrt	SpFrPrt F		°C
	AVAL,216			
Return temperature value	TFrPrtHcl		R	°C
	AI,152 (B1)			
	AI,153 (B2)			
	AI,58 (B3)			
	AI,64 (B4)			
	AI,80 (X8)			
	AVAL,317 (POS9))		
	AVAL,468 (QBM1)		
	AVAL,652 (QBM2)		
Basic settings:	BACnet object	R/RW	Note	
Frost protection limit	FrPrtLm	RW	°C, plant s	shutdown,
	AVAL,217		valve ope	n, pump on
Setp.frost prot.if plant on, heat.coil	SpFrPltOnHcl	RW	°C	
	AVAL,218			
Setp.frost prot.if plant off, heat.coil	SpFrPltOffHcl	RW	°C	

Setp.frost prot.if plant on, heat.coil	SpFrPltOnHcl AVAL,218	RW	C°
Setp.frost prot.if plant off, heat.coil	SpFrPltOffHcl	RW	°C
	AVAL,219		
Max.delay frost protection for startup	DlyMaxFrpSttUp	RW	sec.
When passed, startup is stopped and frost alarm is raised	PINTVAL,109		

5.11.2 Electrical heater (HclEl21y)

After ERC has reached its full output but TSu setpoint is not reached, electrical heating coil can be activated and controlled as second heating sequence to raise the supply air temperature TSu.

Safety functions

Some electric heaters include an output for an overheating safety thermostat. The input for receiving this information can be activated on the controller and after the active signal, the electrical heater is turned off and the ventilation unit is turned off.

The fan speed must be above the set minimum speed to activate the electric heater.

The overtemperature detector must be connected to the electric heater via hardware unless local regulations allow software interlock.

It can be selected whether the fans must be stopped immediately after the safety thermostat has been triggered or whether the fans may run for at least the delay time for the cooldown of the electric heaters (see also Start-up / shut-down sequence [\rightarrow 145]).

Current value	BACnet object	R/RW	Note
Current supply air temperature setpoint for heating	SpTSuHcl	RW	°C
	AVAL,211		
Electrical heater output signal	HclElPos	RW	%
Prio2: Fire / Smoke	AO,64 (Y1)		
Prio5: Protection	AO,107 (A1)		
	AO,116 (A2)		
	AO,125 (A3)		
	AO,134 (A4)		
	AVAL,386 (POS9)		
	AVAL,475 (QBM1AO1)		
	AVAL,482 (QBM1AO2)		
	AVAL,656 (QBM2AO1)		
	AVAL,663 (QBM2AO2)		
Electrical heater command	HclElCmd	RW	
	BO,56 (Q1)		
	BO,71 (Q2)		
	BO,86 (Q3)		
Over temperature detection	HclOvrTDet	R	
	BI,112 (X3)		
	BI,129 (A1)		
	BI,78 (D1 NO)		
	BI,95 (D2 NO)		
	BI,162 (D1 NC)		
	BI,163 (D2 NC)		

Basic settings	BACnet object	R/RW	Note
Enable electric heating coil	EnHclEl BVAL,197	RW	
Fan switch-off delay	DlyOffAflHldH PINTVAL,107	RW	S
Minimum heater output before fan switch off delay is activated	SwiOnAirFIHldH AVAL,213	RW	%
Special settings	BACnet object	R/RW	Note
Heater Kp	GainHclTSuCtrH AVAL,214	RW	% / K
Heater Tn	TnHcITSuCtrH AVAL,108	RW	sec.
Pulse period electrical heater	HclElPlsPrd (Y1) PINTVAL,617	RW	BACnet property 4984
Minimum switch on time	HclElTiOnMin (Y1) PINTVAL,618	RW	BACnet property 4994
Minimum switch off time	HclElTiOffMin (Y1) PINTVAL,619	RW	BACnet property 4995
Alarm configuration for overtemperature	AlmCnfOvrT PINTVAL,573	RW	
Testing and debugging	BACnet object	R/RW	Note
Heating coil device mode Prio2: Fire / Smoke Prio4: Overtemperature protection Prio5: Protection from plant control	HclDevMod MVAL,153		1: Off 2: Control Mode 3: Full Open

5.12 Cooling

Additional cooling is used when the ERC is not available for cooling, is locked for cooling, or is available for cooling but has reached its maximum position. To release cooling, the supply air temperature must rise above the setpoint plus the cooling difference.

With free cooling, the room can be cooled without energy consumption.

If possible, cooling is supported by a brine winding or a ground collector.

5.12.1 Cooling coil chilled water (CclChw21y)

If ERC cannot maintain the supply air temperature setpoint, chilled water cooling coil can be activated and controlled as second cooling sequence.

After activation, the cooling coil pump is activated and the cooling coil valve is controlled so that the supply air temperature is kept at the setpoint. The pump runs depending on the valve position (fixed switch-on point 5 %).

Current value BACnet object R/RW Note R °C Setpoint supply air temp. cooling for cooling coil SpTSuCcl AVAL,222 RW % Cooling valve position CclVlvPos Prio2: Fire / Smoke AO,109 (A1) Prio5: Protection from plant control AO,118 (A2) AO,127 (A3) AO,136 (A4) AVAL,388 (POS9) AVAL,477 (QBM1AO1) AVAL,484 (QBM1AO2) AVAL,658 (QBM2AO1) AVAL,665 (QBM2AO2) Cooling pump command CclPuCmd RW Prio2: Fire / Smoke BO,58 (Q1) Prio5: Protection from plant control BO,73 (Q2) BO,88 (Q3) BVAL,249 (POS9)

Special settings:	BACnet object		R/RW	Note
Cooling Kp	GainCclTSuCtrC I AVAL,223		RW	% / K
Cooling Tn	TnCcITSuCtrC PINTVAL,111		RW	S
Testing and debugging	BACnet object	R/RW	Note	
Cooling coil device mode	CclDevMod		1: Off	
Prio2: Fire / Smoke	MVAL,156 2		2: Control Mode	
Prio4: Overtemperature protection Prio5: Protection from plant control			3: Full Op	en

5.12.2 DX based cooling (CcIDx21y)

If ERC cannot maintain the supply air temperature setpoint, direct expansion cooling coil can be activated and controlled as second cooling sequence.

Activation and operation of DX cooling differs from water based cooling so that cooling valve request must first rise above 10 % (fix) before activation command to DX unit is given. DX activation command is also removed at 5 % (fix) valve position before the valve is completely closed. New activation command can be given earliest after set off-time has elapsed.

The monitoring function can be enabled via value EnMonAirFISta to avoid overcooling and icing if there is no air flow.

Current value	BACnet object		R/RW	Note
Supply air temperature setpoint for cooling	SpTSuCcl AVAL,224			
Cooling valve position	AVAL,478 (QBM1A AVAL,485 (QBM1A	AO,110 (A1) AO,119 (A2) AO,128 (A3) AO,137 (A4) AVAL,389 (POS9) AVAL,478 (QBM1AO1) AVAL,485 (QBM1AO2) AVAL,659 (QBM2AO1)		
Cooling DX status	CclDxCmd BO,59 (Q1) BO,74 (Q2) BO,89 (Q3) BVAL,250 (POS9)	BO,59 (Q1) BO,74 (Q2) BO,89 (Q3)		
Cooling coil DX fault	CcIDxFIt BI,113 (X3) BI,130 (X8) BI,79 (D1 NO) BI,96 (D2 NO) BI,166 (D1 NC) BI,165 (D2 NC)		R	
Special settings	BACnet object		R/RW	Note
Cooling Kp	GainCclTSuCtrC AVAL,225		RW	% / K
Cooling Tn	TnCclTSuCtrC PINTVAL,112		RW	S
DX off time delay	CclDxTiOffMin PINTVAL,116		RW	S
DX min run time	CclDxTiOnMin PINTVAL,115			S
Enable monitoring for air flow	EnMonAirFISta BVAL, 210		RW	S
Testing and debugging	BACnet object	R/RW	Note	
Cooling coil device mode	CclDevMod MVAL,158		1: Off 2: Contro 3: Full O	

5.12.3 Free cooling (FreeCDtr11y)

The purpose of the 'Free cooling' function is to ensure that overheated living area can be cost efficiently cooled down by using the lower outside temperatures just by increasing the air circulation.

Activation of the function occurs, when

- Outside air (TOa) is sufficiently low compared to the apartment temperature • (extract or room), and
- Apartment temperature is above its actual setpoint + configurable hysteresis, and
- Outside temperature is above set minimum limit, and
- Free cooling is configured •

For de-activation a hysteresis of 2K (fix) is used.

During activation, the operating mode is set to Comfort and kept there until one of the activation criteria is no longer fulfilled.

In case of cascade control, the actual room temperature setpoint (depending on the operating mode) is used.

As there is no room temperature setpoint available for supply air control, a configurable virtual room temperature setpoint is used.

Available parameters

Current values	BACnet object	R/RW	Note
Present plant operating mode	PrPltOpMod MVAL,164	R	10: Free Cooling
Actual setpoint from cascade control	SpTR AVAL,30	R	°C
Configurable virtual room setpoint for supply control	SpTRFreeC AVAL,109	RW	°C
Hysteresis TR for free cooling	HysSpTR AVAL,32	RW	к
Basic settings	BACnet object	R/RW	Note
Enabling the free cooling function	EnFreeC BVAL,162	RW	
Outside air minimum limit for activation	TOaLm AVAL,33	RW	°C
Min difference room – outside air temp. For free cooling start	DiffTRTOaSwiOn AVAL,35	RW	К
Minimum on time	TiPreCoolMin	RW	s

PINTVAL,69

5.13 Dampers

5.13.1 Outside air shut off dampers (DmpShoffOa11y)

When ventilation is active the outside air dampers are always open. Both dampers are controlled open/close from one binary output.

Delay time for outside air damper opening can be defined to secure that dampers are fully open before fans are started.

Damper monitoring

When the outside air damper is manually closed (overridden) the air handling unit is shut down after a delay time, as the air flow is blocked.

Available parameters

Actual values	BACnet object	R/RW	Note
Outside air damper command	DmpOaCmd	RW	Outside air
Prio 2: Fire / Smoke	BO,50 (Q1)		damper
Prio 5: Protection from plant control	BO,65 (Q2)		
	BO,80 (Q3)		
	BVAL,241 (POS9)		
Basic settings	BACnet object	R/RW	Note
Outside damper delay time	DlyOnAflVntReq	RW	s
	PINTVAL,81		

128 | 188

5.13.2 Recirculating air damper (DmpMx21y)

Recirculating dampers (mixed air dampers) reuse energy from room air as much as possible. Extract air is mixed with outside air where additional heating/cooling devices are in the room and extract air is efficient enough. This controls the supply air temperature and saves energy. It assumes control over the heating/cooling sequence prior to the heat exchange device.

At the highest priority, air quality, fine dust, or dehumidification control the recirculating air damper. Once maintained, the recirculating air damper is controls the temperature as the first heating / cooling sequence.

A minimum outside air damper position can be configured to ensure a minimum outside air flow

- For TEx > TOa + DiffTRTOaDmpMx, room air can be considered for heating. The recirculating damper is controlled to fully open if the plant is also in heating mode. The function is disabled for TEx < TOa.
- For TEx < TOa DiffTRTOaDmpMx, room air can be considered for cooling. The recirculating damper is controlled to fully open if the plant is also in cooling mode. The function is disabled for TEx < TOa.
- TSuAfPreHcl is used instead of Toa when the preheating coil is active.
- The dehumidify / CO₂ / fine dust function fully opens the outside air damper to improve ventilation (i.e. air quality) when heating/cooling conditions are not met for the recirculating damper.
- The free-cooling and smoke control function fully closes the recirculating damper and fully opens the outside air damper.
- The recirculating air damper fully opens and outside air damper closes if the plant is stopped or in emergency off mode.

The function requires at least one 0-10 V output for the recirculating damper command.

The outside air damper command can be selected but is not required when there is a mechanical rod connected to the recirculating damper.

The recirculating air damper operates in the opposite direction as the outside air damper.

Heat recovery ventialtion (HRV) - HvacFnct26y

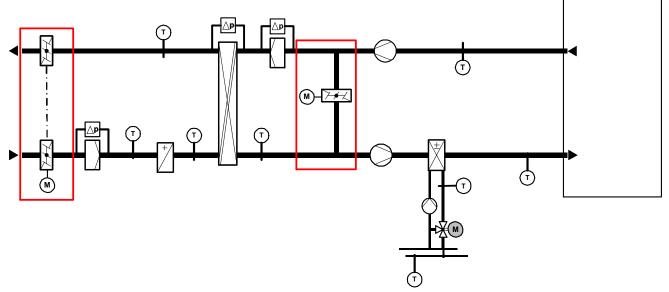


Diagram of a recirculating air damper and outside air dampers (red boxes) as part of an air handling unit.

Actual values	BACnet object	R/RW	Note
Outside air damper position Prio 2: Fire / Smoke Prio 5: Protection from plant control	DmpOaPos AO,163 (A1) AO,166 (A2) AO,168 (A3) AO,169 (A4) AVAL,752 (POS9) AVAL,741 (QBM1AO1) AVAL,745 (QBM1AO2) AVAL,747 (QBM2AO1) AVAL,749 (QBM2AO2)	RW	Outside air damper
Mixing air damper position Prio 2: Fire / Smoke Prio 5: Protection from plant control	DmpMxPos AO,162 (A1) AO,165 (A2) AO,167 (A3) AO,170 (A4) AVAL,753 (POS9) AVAL,740 (QBM1AO1) AVAL,744 (QBM1AO2) AVAL,746 (QBM2AO1) AVAL,748 (QBM2AO2)	RW	Recirculating air damper
Recirculating damper heating/ cooling state	DmpMxHCSta MVAL,943	R	1: Neither 2: Heating 3: Cooling
Basic settings	BACnet object	R/RW	Note
Outside damper delay time	DlyOnAflVntReq PINTVAL,667	RW	S
Minimum position outside air damper	DmpOaPosMin PINTVAL,729	RW	Default 30%
Special settings	BACnet object	R/RW	Note
Damper TSu Kp	GainDmpCtr AVAL,735	RW	%/K
Damper TSu Tn	TnDmpCtr PINTVAL,668	RW	S
Min difference room – outside air temp.	DiffTRTOaDmpMx AVAL,778	RW	к

5.14 Filter supervision (FilAMon21y)

Supply and extract duct air filters are getting dirty when the unit is in operation and they need to be changed in relatively regular service intervals.

Service indication with timer

Maintenance interval timer is set on the controller. When the operating hours reach the runtime limit, the contamination level is assumed to be high enough and it's time to schedule a filter change.

Service indication with pressure differential switch input

Optionally, filters are equipped with dP switches which send a signal to controller when the set contamination level is reached and it's time to schedule a filter change.

Service indication with differential pressure sensors

Pressure sensors QBM97 can be used instead of dP switches. A sensor and a switching point can be defined for each filter to indicate the level of filter contamination. A fixed delay time of 5 minutes is used to avoid alarming caused by short-term pressure changes.

When the filter timer is elapsed or the pressure differential input requires a filter change, a B-Alarm is activated.

Filter runtime can be reset via BACnet object RstTiOpFil or by acknowledge the alarm 1020 'Air Filter dirty'.

Before switching off the unit for filter replacement, it is recommended to execute a shut down for maintenance, see Start-up / shut-down sequence [\rightarrow 145].

Actual values	BACnet object	R/RW	Note
Differential pressure, filter clogged	FilAirDiffPMon	R	
	BI,72 (D1 NO)		
	BI,89 (D2 NO)		
	BI,150 (D1 NC)		
	BI,151 (D2 NC)		
	BI,106 (X3)		
	BI,123 (X8)		
Differential pressure filter supply	DiffPFilSu	R	Ра
	AVAL,669 (QBM1P1)		
	AVAL,703 (QBM1P2)		
	AVAL,667 (QBM2P1)		
	AVAL,709 (QBM2P2)		
Differential pressure filter exhaust	DiffPFilEh	R	Ра
	AVAL,701 (QBM1P1)		
	AVAL,670 (QBM1P2)		
	AVAL,706 (QBM2P1)		
	AVAL,668 (QBM2P2)		
Actual runtime filter since last maintenance	TiOpFil	R	hrs
	AVAL,158		

Filter supervision (FilAMon21y)

Basic settings	BACnet object	R/RW	Note
Runtime limit for air filter replacement	TiOpFilRpc AVAL,157	RW	Н
Filter time reset	FilTiOpFil MVAL,350	RW	1: Ready 2: Reset
Max differential pressure for supply air filter	SpDiffPFilSu AVAL,671	RW	Pa
Max differential pressure for exhaust air filter	SpDiffPFilEh AVAL,672	RW	Pa

5.15 Preheating Functions

Optional preheating functions optimize operation of the HRV especially in winter conditions. An earth to air heat exchanger or a brine coil allow the use of environmental energy from the ground, warming up or cooling down the outside air before reaching the heat exchanger. Alternatively, an electric heating coil can be used as additional heat source. All preheating functions reduce the danger of icing on the heat exchanger by increasing the incoming air temperature in winter times. This is especially recommended, when using a heat exchanger without humidity transfer (plate heat exchanger).

5.15.1 Earth to Air Heat Exchanger (EaHExg21y)

Earth to air heat exchanger include a damper to force or to bypass the air flow through the earth duct. The control depends on an estimated earth temperature which can be configured for winter (heating) and summer (cooling) conditions. A hysteresis of 1 $^{\circ}$ C (fix) and a minimum time of 1 min (fix) for damper open / bypass prevent the damper from moving too frequently.

If there is no demand for heating or cooling, the bypass damper remains in its last state in order to use free energy as much as possible.

Temperature conditions	Supply air conditions		Damper position
TOa < TEarth Winter	Heating requested		closed
TOa > TEarth Winter	Heating requested		bypass
TOa < TEarth Summer	Cooling requested		bypass
TOa > TEarth Summer	Cooling requested		closed
Actual values	BACnet object	R/RW	Note
Bypass damper position	EaHxDmpbCmd	RW	
	BO,54 (Q1)		
	BO,69 (Q2)		
	BO,84 (Q3)		
	BVAL,245 (POS9)		
Basic settings	BACnet object	R/RW	Note
Estimated earth temperature in winter (TOa < 10°C)	TEaWinEst AVAL,353	RW	°C
Estimated earth temperature in summer (TOa > 20°C)	TEaSumEst AVAL,354	RW	٦°
Testing and debugging	BACnet object	R/RW	Note
Preheater device mode	PreHclDevMod		1: Off
	MVAL,407		2: Control mode
			3: Fully open

5.15.2 Brine Coil (PreHclBne21y)

The brine coil includes a pump and a brine flow temperature sensor. The control depends on the brine flow temperature. A hysteresis of 1 °C (fix) and a minimum run / pause time of 1 min (fix) for the pump prevent it from switching too frequently. In case the temperature sensor is not configured, a configurable estimated brine temperature for summer (cooling) and winter (heating) is used instead.

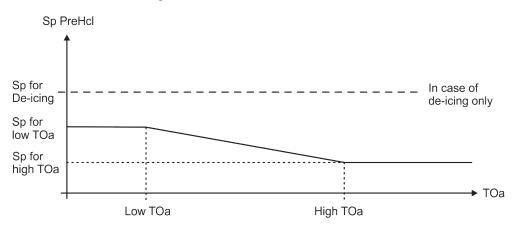
As the brine flow temperature is not measured correctly, when the pump has stopped, the last value measured while the pump is running is taken instead.

The preheating coil can also be used for dehumidification, if dehumidification is requested. Dehumidification is only possible, if the brine flow temperature is below the dewpoint temperature of the room minus a configurable offset, depending on the coil design.

Temperature conditions	Supply air conditions	Pump command
TOa < TFIPreHcl	Heating requested	On
TOa > TFIPreHcl	Heating requested	Off
TOa < TFIPreHcl	Cooling requested	Off
TOa > TFIPreHcl	Cooling requested	On
TOa > TFIPreHcl and Dewpoint - Offset > TFIPreHcl	Dehumidification requested. In case of conflicts, dehumidification request overrules heating or cooling	On
	No dehumidification requested and no heating or cooling request	Off

Available parameters

Actual values	BACnet object		R/RW	Note
Brine pump command	PreHclPuCmd		RW	
	BO,53 (Q1)			
	BO,68 (Q2)			
	BO,83 (Q3)			
	BVAL,244 (POS9)			
Flow temperature brine	TFIPreHcl		RW	
	AI,149 (B1)			
	AI,151 (B2)			
	AI.57 (B3)			
	AI,63 (B4)			
	AI,79 (X8)			
	AVAL,316 (POS9)			
	AVAL,467 (QBM1)			
	AVAL,651 (QBM2)			
Basic settings	BACnet object	R/RW	Note	
Estimated brine temperature in winter	TeaWinEst	RW		
(TOa < 10°C)	AVAL,350			
Estimated brine temperature in summer	TeaSumEst	RW		
(TOa > 20°C)	AVAL,351			

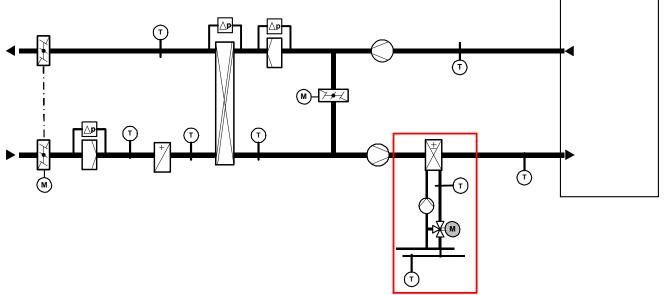

Enable dehumidification via brine preheater	EnPrhDhuCnf BVAL.314	RW	0: No dehumidification 1: Dehumidification
			released, if required
Testing and debugging	BACnet object	R/RW	Note
Testing and debugging Preheater device mode	BACnet object PreHclDevMod	R/RW	Note 1: Off
		R/RW	

5.15.3 Electric Preheating Coil (PreHclEl21y)

The electrical preheating coil contains a temperature sensor TSuAfPreHcl before heat recovery and an overtemperature detector. The control is carried out continuously via an analog output, pulsed via a triac output or switched via a binary output. The setpoint for TSuAfPreHcl is influenced by the outdoor air temperature TOa. The curve settings can be configured. If the ERC is defrosted, the setpoint can be increased to a configurable defrost setpoint.

For safety reasons, the overtemperature detector switches off the electric heater and the entire HRV plant (A alarm).

The overtemperature detector must be connected to the electric heater via hardware unless local regulations allow software interlock.



Preheating Functions

Actual values	BACnet object	R/RW	Note
Electric preheater position	PreHclElPos AO,63(Y1) AO,104 (A1) AO,113 (A2) AO,122 (A3) AO,131 (A4) AVAL,383 (POS9) AVAL,472 (QBM1AO1) AVAL,479 (QBM1AO2) AVAL,653 (QBM2AO1) AVAL,660 (QBM2AO2)	RW	
Electric preheater command	PreHclElCmd BO,52 (Q1) BO,67 (Q2) BO,82 (Q3) BVAL,243 (POS9)	RW	
Supply air temperature after preheater	TSuAfPreHcl AI,147 (B1) AI,148 (B2) AI,56 (B3) AI,62 (B4) AI,78 (X8) AVAL,315 (POS9) AVAL,446 (QBM1) AVAL,650 (QBM2)	R	
Preheating coil overtemperature detector	PreHclOvrTDet BI,74 (D1 NO) BI,91 (D2 NO) BI,154 (D1 NC) BI,155 (D2 NC) BI,108 (X3) BI,125 (X8)	R	
Basic settings	BACnet object	R/RW	Note
Kp for temperature control before heat exchanger	GainPrhTCtr AVAL,347	RW	
Tn for temperature control before heat exchanger	TnPrhTCtr PINTVAL,138	RW	
Pulse period electrical heater	PreHclElPlsPrd (Y1) PINTVAL,620	RW	BACnet property 4984
Minimum switch on time	PrhElTiOnMin (Y1) PINTVAL,621	RW	BACnet property 4994
Minimum switch off time	PrhElTiOffMin (Y1) PINTVAL,622	RW	BACnet property 4995

Heat recovery ventialtion (HRV) - HvacFnct26y

The combined coil is a water based 2-pipe coil that can be used either as a heating coil when supplied with hot water or as a cooling coil when supplied with chilled water.

There are four methods to select heating or cooling mode for the combined coil:

- 1. Outside air temperature, 3-day average (TOaAvrg3Day)
- If selected, the controller starts to record TOa every 3 hours and calculates the average value of the last three days. It goes to cooling mode if TOaAvrg3Day > outside air temperature for cooling limit (HCcITWPmLmC). Otherwise, it is used in heating mode. After switching to cooling mode, TOa must fall below cooling limit setpoint-hysteresis (HCcITOaAveCHys) before switching back to heating mode.
- 3. Calendar
- 4. User can define (month and day) the start and end of cooling mode. The combined coil is operated in cooling mode if the controller's local date is within this range; otherwise it is operated in heating mode.
- 5. Primary chilled water temperature.
- The combined coil is operated on cooling mode for primary water temperature (TChwPm) < primary water temperature limit cooling (HCclTWPmLmC). After switching to cooling mode, TChwPm must rise above temperature limit cooling + hysteresis (HCclTWPmHys) before switching back to heating mode.
- 7. Position the source water temperature sensor where there is continuous water flow throughout the year.
- 8. 4: DI contact
- A DI signal defines the source that provides chilled water if the combined coil water supply comes from a source that can provide hot or chilled water such as heat pump.

In cooling mode, the combined coil operates as detailed for the chilled water cooling coil CclChw21y.

In heating mode, the combined coil operates as detailed for the hot water heating coil in HclHw21y. The only difference is that combined coil frost protection is optional, but required for the heating coil.

Temperature control first uses other available heating or cooling coils. The combined coil is used only if the other coils are unable to maintain the setpoint.

If enabled, the combined coil pump is activated and the coil valve is controlled to maintain the supply air temperature setpoint. During normal operation the pump runs based on the valve position (fixed switch on at 5%). The pump operated continuous if the plant is switched off and the combined coil is in heating mode; this ensures that the return temperature is reliably measured.

Current value	BACnet object	R/RW	Note	
Supply air temperature setpoint for heating mode	SpTSuHHCcl AVAL,761	R	°C	
Supply air temperature setpoint for cooling mode	SpTSuCHCcl AVAL,776			
Primary chilled water temperature	TChwPm Al,173 (B1) Al,174 (B2) Al,175 (B3) Al,176 (B4) Al,177 (X8)	R	°C	
Cooling indication input	HCclCStaln BI,170 (D1) BI,171 (D2) BI,172 (X3) BI,173 (X8)	R		
Combined coil valve position	HCclVlvPos AO,177 (A1) AO,178 (A2) AO,179 (A3) AO,180 (A4)	RW	%	
Prio2: Fire / Smoke	HCclPuCmd BO,106 (Q1) BO,107 (Q2) BO,108 (Q3)	RW		
Prio5: Protection Frost / plant control	TOaAvrg3Day AVAL,768	R		
Coil pump status	HCclHCSta BVAL,361	R	0: Heat 1: Cool	

5

Basic settings:	BACnet object	R/RW	Note
Heat cool mode configuration		RW	1: Outside air temperature 2: Calendar 3: Suouce water temperature 4: DI cooling indicationl
Cooling limit for average TOa		RW	°C
Outside air temperature for cooling hysteresis	;	RW	К
Month of start cooling		RW	
Day of start cooling		RW	
Month of end cooling		RW	
Day of end cooling		RW	
Heating/cooling coil primary water temperature limit cooling		RW	
Heating/cooling coil primary water temperature hysteresis		RW	
Special settings:	BACnet object	R/RW	Note
Heater Kp	GainHCclTSuCtrH AVAL,767	RW	% / K
Heater Tn	GainHCclTSucH PINTVAL,670	RW	sec.
Cooler Kp	GainHCclTSucC AVAL,775	RW	% / K
Cooler Tn	TnHCclTSuCtrC PINTVAL,675	RW	sec.
Testing and debugging	BACnet object	R/RW	Unit
Heating coil device mode Prio 2: Fire / Smoke Prio 5: Protection from plant control	HCclDevMod MVAL,154		1: Off with idle frost 2: Control Mode 3: Full Open 4: Off with runtime frost
Outside air temperature average fast test mode	TOaAvrgFastTst BVAL,360	RW	Record every 5 s instead every 3 hours for testing only, provides 2-minute instead of a 3-day average.

Water coil frost protection

Frost protection is enabled automatically if the combined coil is in heating mode and the return water coil temperature sensor is valid.

Current value	BACnet object	R/RW	Note
Return temperature setpoint for frost	SpFrPrtHCcl	R	°C
	AVAL,762		
Return temperature value	TFrPrtHCcl	R	°C
	AI,168 (B1)		
	AI,169 (B2)		
	AI,170 (B3)		
	AI,171 (B4)		
	AI,172 (X8)		
Basic settings	BACnet object	R/RW	Note
Frost protection limit	FrPrtLmHCcl AVAL,763	RW	°C, plant shutdown, valve open, pump on
Setp.frost prot.if plant on, heatcool.coil	SpFrPltOnHCcl AVAL,764	RW	Default 10°C
Setp.frost prot.if plant off, heatcool.coil	SpFrPltOffHCcl AVAL,765	RW	Default 15°C
Max.delay frost protection for startup If exceeded, startup stops and frost alarm is triggered.	DlyMaxFrpSttUpHCcl PINTVAL,669	RW	sec.

5.17 External dehumidifier

Optionally an external dehumidifier can be used. The following control modes can be selected:

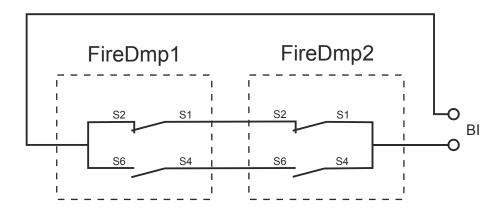
Mode	Design of dehumidifier	Running	Controls
1	Room installation with integrated control	Always, except emergency or maintenance	Internally by dehumidifier
2	Room installation and part of humidity control sequence	Always, except emergency or maintenance	Humidity control sequence
3	Duct installation with integrated control	Only when plant in normal operation	Internally by dehumidifier
4	Duct installation and part of humidity control sequence	Only when plant in normal operation	Humidity control sequence

In any mode, the external dehumidifier is switched off in case of emergency control (fire / smoke) and in case of a controlled shutdown for maintenance.

If used within the humidity control sequence (Mode 2 and 4), a 2-point controller is used with a minimum on / off time of 5 minutes (fix).

Current values	BACnet object	R/RW	Note
External dehumidifier	DHumFrsdCmd	RW	
Prio 2: Fire / Smoke	BO,60 (Q1)		
Prio 5: Protection from plant control	BO,75 (Q2)		
	BO,90 (Q3)		
	BVAL,251 (POS9)		
Basic settings	BACnet object	R/RW	Note
Dehumidifier control mode	DHumCtlModCnf	RW	1: Room, integrated ctrl.
	MVAL,489		2: Room, control sequence
			3: Duct, integrated control
			4: Duct, control sequence
Testing and debugging	BACnet object	R/RW	Note
Dehumidifier device mode	DHumDevMod	RW	1: Off
	MVAL,488		2: Control
			3: Max

5.18 Fire damper (Fdp11y)


The ventilation unit can be equipped with fire dampers that close automatically when a fire alarm is triggered by duct temperatures. During normal operation with the power switched on, the dampers are always open. In the event of a power failure, the dampers close automatically. After closing the fire dampers due to an alarm situation, normal operation can only be resumed if the fault is acknowledged and reset manually.

The fire dampers are equipped with their own release thermostat, so the fire dampers close automatically during the fire situation and the feedback signal from the closed dampers generates an A alarm for the fire situation with emergency shutdown.

Some fire situations are not covered by the built-in release thermostat. The fire damper will be closed by the control program, if

- The duct air temperature supervision has exceeded the fire alarm limit.
- A smoke alarm is raised and smoke alarm mode is set to "Both fans off".

I	N	NOTICE				
•	•	tested periodically to secure correct operation.				
	•	da Fir wh If c	ring the fire damper operation test the ventilation is first shut down, then the mpers close and then open again, before the ventilation can be resumed. e dampers have inbuilt auxiliary switches on both open and closed positions ich signalize that the movement was successful. one of these signals is missing, an A-alarm is generated and the unit is pped.			
Performing a fire damper	1.	Se	t output to "1".			
test		₽	At the latest after 130% of the opening time, the damper must be opened and the FB signal must be "1" for damper opened.			
		Se	t output to "0".			
		₽	The damper closes. Between 4060% of the closing time, the FB signal must be "0".			
	3.	Wa	it for the damper to close completely.			
		₽	Damper continues closing. Between 90130% of the closing time, FB signal must change from "0" to "1" for damper closed.			
	4.	Se	t output to "1".			
		₽	Damper opens. Between 4060% of the opening time, FB signal must be "0".			
	5.	Wa	it for the damper to open completely.			
		₽	Damper continues opening. Between 90% and 130% of the opening time, the FB signal must change from "0" to "1" for damper opened.			
	After switching on the controller, it can be assumed that the fire damper had due to a power failure. The output is set to "0", 130% of the closing time is and the test procedure is carried out from step 4.					
	res	set o	test failure or after unexpected closing of the fire damper, acknowledge and f the alarm is required. After reset, the output is set to "0", 130 % of the time is waited, and the test procedure is executed from step 4 onwards.			

Current values	BACnet object	R/RW	Note
Fire damper status	FdpSta MVAL,160	R	1 = moving 2 = closed 3 = open 4 = no move 5 = no close 6 = no open
Fire damper feedback	FdpFb DI,73 (D1 NO) BI,90 (D2 NO) BI,152 (D1 NC) BI,153 (D2 NC) BI,107 (X3) BI,124 (X8)	R	0 : one or more dampers not opened or closed 1: all fire dampers in open or closed end position
Fire damper open Prio2: Fire / Smoke Prio5: Protection from plant control	FdpCmd BO,51 (Q1) BO,66 (Q2) BO,81 (Q3) BVAL,242 (POS9)	RW	
Fire damper alarm	FdpAlm BVAL,165	R	Fire damper closes unexpectedly or test failed
Fire damper test active	FdpTst BVAL,212	R	Fire damper test actually running
Basic settings	BACnet object	R/RW	Note
Activate fire damper test	MntnSched SCHED,3		Activation via weekly maintenance with BACnet scheduler
Damper opening time	TiOpnFdp PINTVAL,117	RW	sec.
Damper closing time	TiClsFdp PINTVAL,118	RW	sec.
Testing and debugging	BACnet object	R/RW	Note
Fire damper closed by control program	FireAlm BVAL,163	R	

5.19 Priority list

Different functions require priorities over other functions so that logical/critical operation can be guaranteed.

Example

Safety functions

1	Off by smoke detector, emergency, supply air temperature or extract air
	temperature

- 2 Off by fire damper closed
- 3 Purge or smoke extract by smoke detector

Protection functions

- 4 Off by water heating coil frost
- 5 A-Alarms for plant protection
- 6 ERC deicing function

Switch or push button operations

- 7 Rapid ventilation mode (Configured BI, POS8)
- 8 Comfort mode (Conf. BI), Fireplace (Conf. BI), Off mode (Conf. BI), Eco mode (Conf. BI)
- 9 Kitchen ventilator (Conf. BI)
- 10 Maintenance function

User operation

- 11 Temporary fireplace (POS8)
- 12 Present / Away button
- 13 Manual operation

Automatic function

14 Scheduler operation mode

5.20 Start-up / shut-down sequence

For safe and optimum operation of the ventilation unit, special switch-on and switch-off sequences are used to switch the ventilation off and on again.

The ventilation unit is normally not "switched off", but can be switched off for maintenance work or in emergency situations.

The start-up sequence is used every time except in emergency situations. The start-up sequence applies also for fire damper test function which is performed automatically.

Start-up sequences:

- 1. Startup is initiated.
- 2. *Only after power return*: Delay time step 2 (to secure start-up time for valves, fire dampers and ERC).
- 3. *Only with water heating coil*: Heating coil pump switches on and valve drives to fully open position.
- 4. Only with water heating coil: TFrPrtHcl temperature level is checked. If TFrPrtHcl > "Setpoint frost protection if plant on", the start-up may continue. If not, start-up will wait until setpoint is reached or until set timeout step 4 has finished.

If TFrPrtHcl is not reached until timeout, an A-alarm is activated, the startup process is stopped.

- Open the outside air dampers. Delay time step 5 (to secure dampers fully open). If damper output cannot be switched, an A-Alarm is activated, the startup process is stopped.
- ERC ramps up to maximum speed. Heat exchanger bypass closes. Exhaust fan starts and ramps up to Comfort mode speed. If fan speed is configured as A-Alarm, and the feedback signal is not received within the delay time, an A-Alarm is activated, the starting process is stopped. Delay time step 6 (to secure "heating up" of heat exchanger)
- Supply fan starts and ramps up to "unoccupied" mode speed Delay time step7.
 If fan speed is configured as A-Alarm, and the feedback signal is not received within the delay time, an A-Alarm is activated, the starting process is stopped.
- 8. Both fans ramp to required operating mode speed. Delay time step 8 preparing for normal operation.
- 9. Normal operating mode is started.

Shut-down sequences:

Executed after normal operation or if startup is interrupted after step 6 is finished. Shutdown sequence is not used in emergency situations.

- 1. Shutdown is initiated.
- 2. *Only with electric heater*: Electrical heaters are switched off. Delay time step 2.
- 3. Both fans ramp down to stop.
- 4. Close the outside air dampers, same time as in start-up step 5.
- 5. ERC ramps down to stop.
- 6. Plant is "Off".
 - Only with water heating coil: Heating coil is controlled to "Setpoint frost protection if plant off".

Shut-down for Maintenance

The air conditioner can be switched off, e.g. for maintenance work, using BI or the BACnet object. In this case, the shutdown sequence is started and the system performs a controlled shutdown. The stop sequence is executed by activating the input PrtOpModRIn or the BACnet object PltShD. These functions override all other influences except the emergency control, protection control and operation via BI.

Current values	BACnet object	R/RW	Note
Plant start / stop state	PltSttStpSta MVAL,397	R	 off Purge heating coil Open dampers Startup exhaust fan Startup supply fan Prepare normal operation Normal operation Cooldown el. Heater Ramp down fans Close dampers Ramp down ERC Power up delay
Initiate controlled shutdown	PltShdn BVAL,266	RW	0:Inactive 1: Active
BI controlled shutdown	PrtOpModRIn BI,85 (D1) BI,102 (D2) BI,119 (X3) BI,136 (X8)	R	0: Inactive 1: Active
Basic settings	BACnet object	R/RW	Note
Delay time after power-on, startup step 2	DlyPwrUpHrv PINTVAL,130	RW	s [min value 120 sec, if fire dampers are used]
Timeout for water heating coil purge, startup step 4	DlyMaxFrpSttUp PINTVAL,109	RW	sec.
Runtime for outside air dampers, startup step 5	DlyOnAflVntReq PINTVAL,81	RW	sec.
Delay time for exhaust fan only, startup step 6	DlyOnAflEhSta PINTVAL,129	RW	sec.
Delay time supply fan ramp up, startup step 7	TiSttUpSpdVnt PINTVAI,104	RW	sec.
Delay time before normal operation, startup step 8	DlyOnAirFlSta PINTVAL,103	RW	sec.
Delay time cooldown electric heaters, shutdown step 2	DlyOffAflHldH PINTVAL,107	RW	sec.

5.21 Safety functions (SftyCtl11y)

Ventilation unit can be equipped with various kinds of hazard indicators such as smoke, carbon monoxide detectors or human interaction (push button).

Four different situations are implemented:

- Smoke extract, DI signal with configurable plant reaction
- Emergency off, DI signal always shutting down the plant, but not closing fire dampers
- Temperature supervision, always shutting down the plant and closing the fire dampers, if existing.
- Fire dampers, described above, always shutting down the plant.

5.21.1 Duct temperature supervision

Maximum duct temperatures are monitored with sensors supply air temperature TSu, with temperature after preheating TSuAfPreHcl (if installed) and extract air temperature TEx (if installed).

If duct temperature rises over set fire alarm value it, an A-alarm is raised, and an immediate shutdown is activated, fire dampers are closed, if existing.

Additionally a B-Alarm for maintenance is raised, if supply air temperature exceeds a maximum maintenance limit or falls below a minimum maintenance limit during normal operation.

Basic settings	BACnet object	R/RW	Note
Supply air temperature fire alarm limit	TSuFireAlmLm AVAL,37	RW	°C
Extract air temperature fire alarm limit	TExFireAlmLm AVAL,40	RW	°C
Supply air temperature max maintenance limit	TSuHiAlmLm AVAL,38	RW	°C
Supply air temperature min maintenance limit	TSuLoAlmLm AVAL,39	RW	°C

5.21.2 Fire / smoke / emergency off

Configured binary input: Smoke extract

Within first phase of a fire situation, it can be assumed that ventilation may be used to help the prevailing situation, thus functionality is different from temperature driven fire alarm coming from temperature measurement, fire damper indication, or dedicated emergency off signal.

Depending on the requirements, ventilation unit can be set to react on an active signal 4 different ways:

- Both fans would be switched to 100% speed in case of active alarm, fire dampers remain open.
- Both fans would be switched to 0% speed in case of active alarm, fire damper is closed.
- Supply fan would be switched to 100% speed and exhaust fan to 0% speed.
- Supply fan would be switched to 0% speed and exhaust fan to 100% speed.

Configured binary input: Emergency off

• Switches off both fans and closes the outside air dampers immediately. Since ventilation operation is a reaction to A-Alarm situation, the defined function will only be stopped after A-Alarm is reset and acknowledged. Or the controlling components are destroyed.

Current values	BACnet object	R/RW	Note
Fire/smoke alarm status	Smext	R	Reaction as
	BI,81 (D1 NO)		configured in
	BI,98 (D2 NO)		SmextMod
	BI,168 (D1 NC)		
	BI,169 (D2 NC)		
	BI,115 (X3)		
	BI,132 (X8)		
Emergency off status	EmgOff	R	Plant shutdown
	BI,80 (D1 NO)		
	BI,97 (D2 NO)		
	BI,166 (D1 NC)		
	BI,167 (D2 NC)		
	BI,114 (X3)		
	BI,131 (X8)		

Basic settings	BACnet object	R/RW	Note
Smoke extract plant operation	SmextMod	RW	1: Both fans 100%
	MVAL,125		2: Both fans 0%
			3: Supply 100%, exhaust 0%
			4: Supply 0%, exhaust 100%

5.22 Time counters

Various time counters are running automatically on the background depending on which operating mode is active. Counters can be reset by manually setting the value to zero.

Operation time	BACnet object	R/RW	Note
Power-up time of controller	OphDev AVAL,156	RW	hrs
Operation time in protection mode	OphPrt AVAL,256	RW	hrs
Operation time in unoccupied mode	OphUcd AVAL,266	RW	hrs
Operation time in economy mode	OphEco AVAL,267	RW	hrs
Operation time in comfort mode	OphCmf AVAL,268	RW	hrs
Operating time fireplace ventilation	OphFplcVnt ACAL,146	RW	hrs
Operating time kitchen ventilation	OphKtchVnt AVAL,310	RW	hrs
Operating time ERC heating	OphErcH AVAL,398 AVAL,402	RW	hrs
Operating time ERC cooling	OphErcC AVAL,399 AVAL,401	RW	hrs
Operating time electric heating coil	OphHcl AVAL,212	RW	hrs
Operating time water heating coil	OphHcl AVAL,220	RW	hrs
Operating time preheating brine	OphPreHcl AVAL,396	RW	hrs
Operating time preheating earth	OphPreHcl AVAL,397	RW	hrs
Operating time electric preheater	OphPreHcl AVAL,348	RW	hrs
Operating time DX cooling	OphCcl AVAL,404	RW	hrs
Operating time water cooling coil	OphCcl AVAL,403	RW	hrs
Operating time combined heating / cooling coil	OphHCcl AVAL,766	RW	hrs

5.23 Alarm functions

5.23.1 General

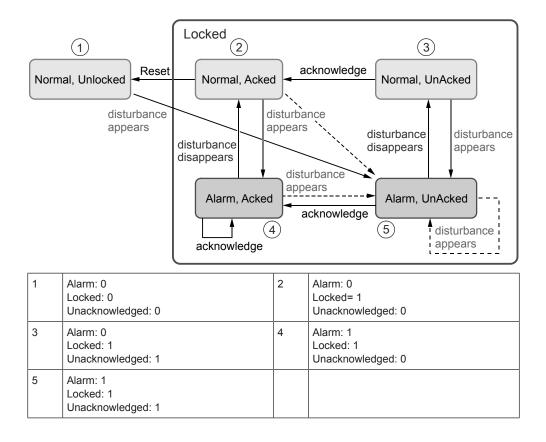
The application uses 2 different alarm classes:

- An **A-Alarm** indicated an important and urgent situation. If an A-Alarm is triggered, the unit shuts down. An A-Alarm must be acknowledged and can only be reset after cause of alarm is eliminated.
- A **B-Alarm** indicates a less urgent maintenance incident and during active Balarm, the unit runs either normally or is still in acceptable condition to run (without major problems).

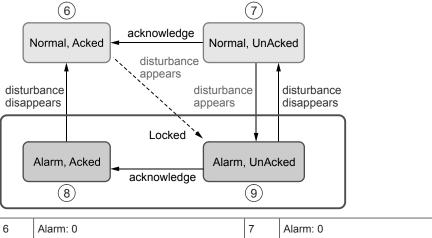
The installer can configure alarm for certain errors and can choose between A-Alarm, B-Alarm or no alarm.

Alarms must be acknowledged and as soon as the cause for each alarm is eliminated , normal operation is resumed. If one or more reasons still exist, acknowledgement does not reset that specific alarm and operation might not continue normally.

All alarms are shown with a time stamp and entry to non volatile storage for each "change of state".


Alarm states 5 different alarm states are used in the application and they are valid for both A and B-Alarms. These different states are meant to give additional information for different users and different situations. Relay operation is depending on actual

configuration.


State	Situation	Alarm relay
Normal	Everything works normally	Open
Alarm, unacknowledged	Problem detected by controller and alarm activated (e.g. new alarm)	Closed
Alarm, acknowledged	Problem still existing, service man acknowledged the active alarm	Open
Normal, acknowledged	 Problem fixed / eliminated, alarm is acknowledged. For A-Alarm: Reset pending to unlock unit. For B-Alarm: Works normal. 	Open
Normal, unacknowledged	Problem fixed / eliminated, but alarm is not acknowledged	Closed

In the case of critical A-Alarms, the application operation is locked in shut down mode until the alarm is acknowledged and reset.

A-Alarms

B-Alarms

6	Alarm: 0 Unacknowledged: 0	7	Alarm: 0 Unacknowledged: 1
8	Alarm: 1 Unacknowledged: 0	9	Alarm: 1 Unacknowledged: 1

Alarm functions

Alarm indication	BACnet object	R/RW	Note
	AalmIndOut BO,61 (Q1) BO,76 (Q2) BO,91 (Q3) BO,95 (Y1)	RW	-
	BVAL,252 (POS9) BalmIndOut BO,62 (Q1) BO,77 (Q2) BO,92 (Q3) BO,96 (Y1) BVAL,253 (POS9)	RW	-
	CmnAlmIndOut BO,63 (Q1) BO,78 (Q2) BO,93 (Q3) BO,97 (Y1) BVAL,254 (POS9)	RW	-
	OpIndOut BO,64 (Q1) BO,79 (Q2) BO,94 (Q3) BO,98 (Y1) BVAL,255 (POS9)	RW	-
			1
Acknowledge and Reset	BACnet object	R/RW	Note
Acknowledge and Reset A-Alarm acknowledgement and reset	BACnet object AalmAck MVAL,137	R/RW	Note 1: Ready 2: Acknowledge 3: Reset Automatic return to 1
-	AalmAck		1: Ready 2: Acknowledge 3: Reset
A-Alarm acknowledgement and reset	AalmAck MVAL,137 BalmAck	RW	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge
A-Alarm acknowledgement and reset B-Alarm acknowledgement	AalmAck MVAL,137 BalmAck MVAL,133	RW	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge Automatic return to 1
A-Alarm acknowledgement and reset B-Alarm acknowledgement A-Alarms	AalmAck MVAL,137 BalmAck MVAL,133 BACnet object AalmSta	RW RW R/RW	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge Automatic return to 1 Note 1: Acknowledged, unlocked 2: Unacknowledged
A-Alarm acknowledgement and reset B-Alarm acknowledgement A-Alarms A-Alarm state	AalmAck MVAL,137 BalmAck MVAL,133 BACnet object AalmSta MVAL,135 AalmInd	RW RW R/RW R	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge Automatic return to 1 Note 1: Acknowledged, unlocked 2: Unacknowledged 3: Locked 1: Normal
A-Alarm acknowledgement and reset B-Alarm acknowledgement A-Alarms A-Alarm state A-Alarm indication	AalmAck MVAL,137 BalmAck MVAL,133 BACnet object AalmSta MVAL,135 AalmInd MVAL,136 AalmCode	RW RW R/RW R	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge Automatic return to 1 Note 1: Acknowledged, unlocked 2: Unacknowledged 3: Locked 1: Normal 2: Alarm
A-Alarm acknowledgement and reset B-Alarm acknowledgement A-Alarms A-Alarm state A-Alarm indication A-Alarm code	AalmAck MVAL,137 BalmAck MVAL,133 BACnet object AalmSta MVAL,135 AalmInd MVAL,136 AalmCode AVAL,49	RW RW R R R R R	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge Automatic return to 1 Note 1: Acknowledged, unlocked 2: Unacknowledged 3: Locked 1: Normal 2: Alarm 09999
A-Alarm acknowledgement and reset B-Alarm acknowledgement A-Alarms A-Alarm state A-Alarm indication A-Alarm code B-Alarms	AalmAck MVAL,137 BalmAck MVAL,133 BACnet object AalmSta MVAL,135 AalmInd MVAL,136 AalmCode AVAL,49 BACnet object BalmSta	RW RW R R R R R R R R R	1: Ready 2: Acknowledge 3: Reset Automatic return to 1 1: Ready 2: Acknowledge Automatic return to 1 Note 1: Acknowledged, unlocked 2: Unacknowledged 3: Locked 1: Normal 2: Alarm 09999 Note 1: Acknowledged, unlocked 2: Unacknowledged, unlocked

Alarm functions

5

Alarm class settings	BACnet object	R/RW	Note
Alarm configuration for outside air	AlmCnfTOa	RW	1: A-Alarm
temperature	MVAL,141		2: B-Alarm
Alarm configuration for exhaust air	AlmCnfTEh	RW	1: A-Alarm
temperature	MVAL,932		2: B-Alarm
Alarm configuration for supply air	AlmCnfTSuAfPrh	RW	1: A-Alarm
temperature after preheater	MVAL,931		2: B-Alarm
Alarm configuration for	AlmCnfOvrT	RW	1: Immediate shutdown
overtemperature	MVAL,573		2: Controlled shutdown with delay
Alarm configuration for heat exchanger	AlmCnfHExg	RW	1: A-Alarm
	MVAL,348		2: B-Alarm
			3: None
Alarm configuration for all fan errors	AlmCnfFanFb	RW	1: A-Alarm
(feedback fault, error signal or Modbus	MVAI,349		2: B-Alarm
interrupted)			3: None (No fan error supervision. – Do not use 'None' for Modbus fans)

5.23.2 Alarm codes

Error codes are divided in different groups for easier recognition of the alarm source. Those groups are:

Error code	Error source
10001999	Hardware related errors
20002999	Application related errors
30003999	Communication errors
90009999	3rd party related errors

Code	Alarm Class	Name/Description	Source	Plant lock	BACnet object / Comment	Influence of alarm
Code	range for	- Hardware (AHU)				
1001	A	Supply air temperature, sensor fault	System	Stop	TSu	Shutdown AHU
1002	A/B	Exhaust air temperature, sensor fault	System	Run	TEh, active only if sensor available	Shutdown AHU / No heat exchanger supervision possible
1003	В	Extract air temperature, sensor fault	System	Run	TEx, active only if sensor available	Fallback to room temperature control or supply air control
1004	A/B	Outside air temperature, sensor fault	System	Conf.	ТОа	Shutdown AHU / fallback to default
1005	A	Frost protection temperature for heating coil, sensor fault	System	Stop	TFrPrtHcl, active only if HclHw selected	Shutdown AHU, Frost protection mode
1006	В	Relative humidity for extract air, sensor fault	System	Run	HuRelEx, active only if sensor available	Stop Humidity control if all sensors fail
1009	A	Fire damper, position feedback fault	Proces s	Stop	FdpFb, active only if Fdp selected. Plausibility check of fire damper position feedback	Shutdown AHU
1012	В	Room temperature, sensor fault	System	Run	TR with POS8/QMX3	Fallback to extract temperature control or supply air control
1013	В	Room air quality, sensor fault	System	Run	AQualR with QMX3 or PmR	Stop air quality control if all sensors fail
1014	В	Extract air quality, sensor fault	System	Run	PmR or AQualR, Particulate matters, Air quality	Stop control if all sensors fail
1015	В	Cooling coil DX evaporator fault	Proces s	Run	CcIDxFlt (BI, active only if CcIDx selected	Switch off cooling device
1017	В	Room air humidity, sensor fault	System	Run	HuRelR, if configured on QMX	Stop Humidity control if all sensors fail
1018	A/B	Supply air temp. after preheating coil, sensor fault	System	Run	TSuAfPreHcl, active only if sensor available	Shutdown AHU / Shutdown electric preheating coil, fallback value for heat exchanger efficiency
1019	В	Flow temperature preheating coil, sensor fault	System	Run	TFIPreHcl, active only if sensor available	Fallback to default value
1020	В	Air filter, dirty	Proces s	Run	Operating hours of air filter exceeds limit or delta P, active only if FilA selected	No reaction
1021	В	Supply air temperature after heat exchanger, sensor fault	System	Run	TsuAfHExg, active only if sensor available	Fallback value for Hexg efficiency calculation
1031	A/B/n	Heat Exchanger fault	Proces s	Run	RotHExgFlt or HExgCdnMon (BI)	Shutdown AHU / Bypass or shutdown HExg / no reaction
1032	В	Supply air pressure, sensor fault	System	Run	PSu, active only if VntCtl12 selected	Fallback to extract air control, linear fan speed if all sensors fail

Influence of alarm

Alarm functions

Fallback to supply air control, linear

5				
-•)		р		
	L	÷	s I	
	ī		۷.	

1033	В	Extract air pressure, sensor fault	System	Run	PEx, active only if VntCtl12 selected	Fallback to supply air control, linear fan speed if all sensors fail
1034	В	Differential pressure supply air fan, sensor fault	System	Run	DiffPFanSu, active only if sensor available	Fallback to linear fan speed, if in air flow control
1035	В	Differential pressure exhaust air fan, sensor fault	System	Run	DiffPFanEh, active only if sensor available	Fallback to linear fan speed, if in air flow control
1037	A/B/n	Supply air fan fault	Proces s	conf.	FanSuSpdFb, FanSuFlt Check of fan speed feedback or fault signal	Shutdown AHU / No reaction / No reaction
1038		Exhaust air fan fault	Proces s	conf.	FanSuSpdFb, FanSuFlt, Check of fan speed feedback or fault signal	Shutdown AHU / No reaction / No reaction
1041	A	Frost protection temperature for combined coil, sensor fault	System	Stop	TFrPrtHCcl, active only if sensor available	Shutdown AHU, Frost protection mode
1042	В	Combined coil supply water temperature, sensor fault	System	Run	TRtSu, active only if sensor available	Fallback to default heating mode
Code	range for	- Application				
2001	A	Emergency off	Proces s	Stop	EmgOff (BI)	AHU off
2002	A	Smoke detector	Proces s	Stop	Smext (BI)	Smoke extract mode
2004	A	Fire alarm	Proces s	Stop	Supply (TSu) or extract (TEx) air temperature exceeds max. limit	Shutdown AHU
2005	В	Supply air temperature, exceeds operating limits	Proces s	Run	Supply air temperature (TSu) exceeds min/max limits	No reaction
2007	A	Heating coil, frost warning	Proces s	Stop	Temperature (TFrPrtHcl) below frost protection limit , active only if HclHw selected	Shutdown AHU, Frost protection mode: Switch on pump, open valve
2010	A	Heating coil, over temperature	Proces s	Stop	HclOvrTDet (BI), active only if HclEl selected	Shutdown AHU
2012	A	Preheating coil, overtemperature	Proces s	Stop	PreHclOvrTDet, active only if PreHclEl selected	Shutdown AHU
2013	A	Outside air damper stops air flow	Proces s	Stop		Shutdown AHU
2017	A/B/n	Heat exchanger efficiency supervision	Proces s	Conf.	Plausibility check of air temperatures	Shutdown AHU / Bypass or shutdown / no reaction
2020	A	Combined coil, frost warning	Proces s	Stop	Temperature (TFrPrtHCcl) below frost protection limit, active only if TFrPrtHCcl selected and HCcl in heating mode	Shutdown AHU, frost protection mode: Switch on pump, open valve
Code	range for	- Communication				
3005	В	I/O extension modul, Modbus communication fault	System	Run	POS9, active only if device configured	Same reaction as for each connected input
3011	В	Duct pressure sensor, Modbus communication error	System	Run	QBM, active only if device configured	Fallback to linear Fan speed
3012	A/B	Supply air fan, Modbus communication fault	System	Conf.	Active only if Modbus fan configured	A: Shutdown AHU / B: EHeater & DxCcl stop Reaction of fan based on fan device configuration
3013	A/B	Supply air fan, Modbus communication fault	System	Conf.	Active only if Modbus fan configured	A: Shutdown AHU / B: No reaction

Code

1033

Alarm

Class

В

Name/Description

Extract air pressure,

Source

System

Plant

lock

Run

PEx,

BACnet object / Comment

Reaction of fan based on fan device configuration

Alarm functions

Code	Alarm Class	Name/Description	Source	Plant lock	BACnet object / Comment	Influence of alarm
3101	В	Room sensor, KNX PL-Link communication error	System	Run	Common fault for all PL-Link room devices: POS8.4420/4440, QMX3.P30/P40/P70, active only if device configured	

5.23.3 Error presentation in Cloud

All Errors are also reported to the Cloud. Active alarms can trigger messages / reports via the Cloud (f.e. messages via e-mail). The Cloud uses the following alarm classes:

- Class 1 = A-Alarm
- Class 2 = B-Alarm
- Class 4 = Communication interruption to Cloud

For more information on the use of the alarm classes, refer to the documentation for remote servicing via cloud, see

"Documentation and short description of compatible devices [\rightarrow 11]".

5.24 Periodical maintenance function

	Certain maintenance functions of the ventilation unit must be performed at regular intervals, e.g. fire protection test or valve/pump kick function. For some functions, the ventilation unit must always be stopped to complete the entire process. Others can be made during operation, e.g. cooling valve/pump kick in winter. In order to perform these functions efficiently and inconspicuously, all periodic functions can be performed in one period and thus the ventilation (if necessary at all) can only be switched off once in a certain time.
	The functions are automatically linked to the periodic maintenance function during commissioning.
	The following functions are operated in the order shown:
Fire damper test (only if existing)	After ventilation is shut down, dampers are driven open and close to check that they are working correctly
Valve and pump kick	When ventilation shutdown is required due to fire damper test, valve and pump kick function is carried out during shutdown. Otherwise the kick function is executed while the plant is running. Each valve and pump which is not otherwise operated within the last 7 days, is part of the kick function.
	Valves are opened fully for 30 seconds, then closed again.
	 After 20 seconds, valves are moved to 6% position and the pumps are

 After 20 seconds, valves are moved to 6% position and the pumps ar switched on for 30 seconds.

After all functions have been operated, ventilation start-up is made and normal operation is resumed.

Current values	BACnet object	R/RW	Note
Maintenance function status	PrMntnSta	R	1: None
	MVAL,165		2: Shutdown plant
			3: Fire damper test
			4: Kick function
			5: Restart plant
Trigger maintenance functions	MntnCmd	RW	Trigger,
Prio 8, 13: manual triggering	BVAL,213		reset after 60 sec.
Prio15: trigger via scheduler			
Basic settings	BACnet object	R/RW	Note
Interval for automatic maintenance function	MntnSched	RW	BACnet scheduler
	SCHED,3		

5.25 Analysis functions

The application includes some analysis points. A test can be done by activating the item to test and then reading the result. The result is a 5-digit coded number. These following items are available for HVAC components:

Item	Diagnosis Item-No	Result	Note
Supply fan	2	Digits 45 Controller state duct pressure / air flow	1: off 3: active modulating 4: minimum output 5: maximum output
		Digits 13 Additional influence	1: cooling 2: heating 4: air quality 5: cooling + air quality 6: heating + air quality 8: humidity 9: cooling + humidity 10: heating + humidity 12: AQ + humidity 13: Cooling + AQ + humidity 14: heating + AQ + humidity
Exhaust fan	3	Controller state duct pressure / air flow	1: off 3: active modulating 4: minimum output 5: maximum output
Heating coil	4	Digits 45 Controller state supply air	1: off 3: active modulating 4: minimum output 5 :maximum output
		Digits 13 Controller state frost controller	1: off 3: active modulating 4: minimum output 5 :maximum output
Cooling coil	5	Controller state supply air controller	1: off 3: active modulating 4: minimum output 5:maximum output
Energy recovery	6	Digits 45 Controller state cooling controller	 1: off 3: active modulating 4: minimum output 5:maximum output
		Digits 13 Controller state heating controller	 1: off 3: active modulating 4: minimum output 5: maximum output
Preheating coil	7	Controller state temperature after preheating	1: off 3: active modulating 4: minimum output 5:maximum output

Testing and debugging	BA-object	R/RW	Note
Select diagnostics for HVAC component	DiagHvacCpSel PINTVAI,131	RW	17, See above
Diagnostic value for HVAC components	DiagHvacCpVal AVAL,239	R	Coded value, 00001 32767, see above

These following items are available for overall plant functions:

Item	Diagnosis Item-No	Result	Note
Cascade controller heating	1	Digits 45 Controller extract air controller	1: off 3: active modulating 4: minimum output 5: maximum output
		Digits 13 Controller output extract air controller	0100% output signal
Cascade controller cooling	2	Digits 45 Controller state re-extract air controller	1: off 3: active modulating 4: minimum output 5: maximum output
		Digits 13 Controller output extract air controller	0100% output signal
Dehumidification controller	3	Digit 5 Controller state Fan	1: off 3: active modulating 4: minimum output 5: maximum output
		Digit 4 Controler state Preheater	1: off 3: active modulating 4: minimum output 5: maximum output
		Digits 13 Controller state dehumidifier	1: off 3: active modulating 4: minimum output 5: maximum output
Air quality controller	4	Controller state	1: off 3: active modulating 4: minimum output 5: maximum output
Fan boost / rapid ventilation	5	Status	2: temporarily active3: constantly active
Fireplace ventilation	6	Status	2: constantly active 3: temporarily active
Particulate matters controller	7	Digit 4 Controller state	0: Interrupt time active 1: Off 3: Active modulating 4: Minimum output 5: Maximum output
		Digits 13 Controller output	0100% output signal

A6V10733786_en_d

Analysis functions

Testing and debugging	BA-object	R/RW	Note
Select diagnostics for plant functions	DiagPltFnctSel PINTVAI,67	RW	17, see above
Diagnostic value for plant functions	DiagPltFnctVal AVAL,29	R	Coded value, see above

6 Engineering of communicative devices

Only **one** type of each device as described below can connect to S300 controllers.

6.1 PL-Link

General rules

- Via PL-link **1** room operating unit POS8.4420 (T) or **1** POS8.4440 (T, rH) can be connected to the controller unit.
- Additionally it's possible to connect PL-link room sensors (QMX3..) to acquire additional information from rooms.

Because of auto-connect and KNX/PL-Link power supply the number of room operator units and room sensors is limited.

1 device	2 devices plus	3 devices plus	Example
POS8.4420	any QMX3.P	a different type of QMX3.P	POS8.4420 + QMX3.P30 + QMX3.P70
POS8.4440	any QMX3.P	a different type of QMX3.P	
QMX3.P30	QMX3.P40 or QMX3.P70	a different type of QMX3.P	
QMX3.P40	QMX3.P70	a different type of QMX3.P	
QMX3.P70	QMX3.P30 or QMX3.P40	a different type of QMX3.P	QMX3.P30 + QMX3.P40 + QMX3.P70

For more information about configuring the connection, see "Selecting the device connections [\rightarrow 32]".

Communication monitoring

Communication with room operator unit and sensors is constantly monitored. The monitoring is activated as soon as the device is selected (basic configuration).

If the communication with one of the devices cannot be established or gets lost, a collective B-alarm is triggered: "3101 Room sensor, KNX PL-Link communication error".

!	NOTICE
•	Unsuccessful detection of devices
	Selected KNX / PL-Link devices must be connected before powering the controller, otherwise the devices will not be recognized.

Limits for PL-Link devices

6.2 Modbus components

General rule

Devices that can be connected to Modbus master Interface

Device	Description	Address	Note
POS9.1515	IO extension	41	
QBM97 (1)	Air pressure sensor # 1	40	DIP switch setting required
QBM97 (2)	Air pressure sensor # 2	42	DIP switch setting required
FanSu	EBM Papst supply air fan	1	Configuration with EBM Papst tool required.
			Must be used together with EBM Papst exhaust air fan
FanEh	EBM Papst exhaust air fan	2	Configuration with EBM Papst tool required.
			Must be used together with EBM Papst supply air fan

Protocol parameters

Baud rate	19200
Parity	Even
Stop bits	1

Communication monitoring

Communication with the slave devices is constantly monitored. The monitoring is activated as soon as the device is selected (basic configuration). If the communication with the device cannot be established or gets lost, individual alarm is triggered:

- B-Alarm "3005: I/O extension module, Modbus communication error"
- B-Alarm "3011: Duct pressure sensor, Modbus communication error"
- Configurable "3012: Supply air fan, Modbus communication error"
- Configurable "3013: Exhaust air fan, Modbus communication error"

An adjustable delay time to avoid false alarms due to short disturbances can be configured.

Available parameters	Actual values	BA-object	R/RW	Note
	Delay for communication error	DlyComErr, PINTVAL, 80	RW	The alarm is triggered as soon the set time has elapsed. Default = 120s

ŝ

6.2.1 I/O extension module POS9..

Slave address: 41

Note

The slave address is already set in the extension module. It cannot be changed.

Actual I/O values	BACnet object	R/W	Note	Register Address	Function code
Differential pressure P21	DiffPP21 AI,110	R	-30003000 Pa	5	03: Read holding Pooling=4s
Differential pressure P22	DiffPP22 Al,113	R	-30003000 Pa	7	03: Read holding Pooling=4s
Temperature input X21	TInX21 Al,112	R	-4080°C	9	03: Read holding Pooling=16s
Analog input X22	AlnX22 Al,111	R	0100.0%	13	03: Read holding Pooling=16s
Relay output Q21	RlyOutQ21 BO,100	R/W	Inactive / Active	24	06: Write single HB=20s / on change
Analog output A21	AOutA21 AO,139	R/W	0100.0%	21	HB=20s / COV=2%

I/O reliability & control	BACnet object	R/W	Note	Register address	Function code
Reliability of differential pressure P21	DiffPP21Rlb MVAL,624	R	BACnet reliability definitions	4	03: Read holding Pooling=16s
Reliability of differential pressure P22	DiffPP22Rlb MVAL,625	R	BACnet reliability definitions	6	03: Read holding Pooling=16s
Reliability of temperature input X21	TInX21Rlb MVAL,626	R	BACnet reliability definitions	8	03: Read holding Pooling=16s
Reliability of analog input X22	AlnX22Rlb MVAL,629	R	BACnet reliability definitions	12	03: Read holding Pooling=16s
Device mode	DevMod MVAL,627	W	Standby / Normal operation	3	06: Write single HB=20s / on change

Setting	BACnet object	R/W	Note	Register address	Function code Polling / heartbeat / COV
Signal type of input X21	X21InSigTyp MVAL,630	W	None / NTC10k	102	06: Write single On change
Signal type of input X22	X22InSigTyp MVAL,631	W	None / 010V	103	06: Write single On change
Signal type of output A21	A21OutSigTyp MVAL,632	W	None / 010V / PWM (default=010V)	104	06: Write single On change
PWM frequency output A21	A21OutPwmFq PINTVAL,574	W	5003000Hz (default=2500Hz)	105	06: Write single On change

For additional information, refer to the POS9.1515 datasheet, see "Documentation and short description of compatible devices [\rightarrow 11]".

6.2.2 Air pressure sensor #1 QBM97..

Slave address: 40 (factory default)

Notes

- The slave address must be set with dip switches.The first QBM97 must have slave address 40.
- Verify the DIP settings on the QBM97 as per the description on the QBM97 cover.

BACnet object / device register assignment

Actual I/O values	BACnet object		R/W	R/W Note		Function code
Differential pressure P1	DiffPP1(1) AI,114		R	-30003000 Pa	5	03: Read holding Pooling=4s
Differential pressure P2	DiffPP2(1) AI,115		R	-30003000 Pa	7	03: Read holding Pooling=4s
Analog input Al1	AlnAl1(1) Al,116		R	-4080°C	21	03: Read holding Pooling=16s
Analog input Al2	AlnAl2(1) Al,117		R	0100.0%	51	03: Read holding Pooling=16s
Analog output AO1	AOutAO1(1) AO,140		R/W	0100.0%	27	06: Write single HB=20s / COV=2%
Analog output AO2	AOutAO2(1) AO,141		R/W 0100.0%		57	06: Write single HB=20s / COV=2%
I/O reliability & control	BACnet object	R/W	Note		Register address	Function code, Polling / heartbeat / COV
Reliability of differential pressure P1	DiffPP1Rlb(1) MVAL,636	R	BACnet	reliability definitions	4	03: Read holding Pooling=16s
Reliability of differential pressure P2	DiffPP2Rlb(1) MVAL,637	R	BACnet	reliability definitions	6	03: Read holding Pooling=16s
Reliability of analog input Al1	AlnAl1Rlb(1) MVAL,639	R	BACnet	reliability definitions	20	03: Read holding Pooling=16s
Reliability of analog input Al2	AlnAl2Rlb(1) MVAL,641	R	BACnet reliability definitions		50	03: Read holding Pooling=16s
Setting	BACnet object	R/W	Note		Register address	Function code Polling / heartbeat / COV
Signal type of input AI1	Al1InSigTyp(1) MVAL,640	W	None / Pt1000 / LG-Ni1000 / NTC10k / Ni1000		22	06: Write single On change
Signal type of input AI2	Al2InSigTyp(1) MVAL,642	W	None / 0)10V	52	06: Write single On change

For additional information, refer to the QBM97.. datasheet, see "Documentation and short description of compatible devices [\rightarrow 11]".

6

6.2.3 Air pressure sensor #2 QBM97..

Slave address: 42

• The slave address must be set with dip switches.

Notes

- The first QBM97 must have slave address 40.
- Verify the DIP settings on the QBM97 as per the description on the QBM97 cover.

BA-object / device register assignment

Actual I/O values	BAcnet object		R/W	R/W Note		Function code
Differential pressure P1	DiffPP1(2) AI,155		R	-30003000 Pa	5	03: Read holding Pooling=4s
Differential pressure P2	DiffPP2(2) AI,156		R	-30003000 Pa	7	03: Read holding Pooling=4s
Analog input Al1	AlnAl1(2) Al,157		R	-4080°C	21	03: Read holding Pooling=16s
Analog input Al2	AlnAl2(2) Al,158		R	0100.0%	51	03: Read holding Pooling=16s
Analog output AO1	AOutAO1(2) AO,145		R/W	R/W 0100.0%		06: Write single HB=20s / COV=2%
Analog output AO2	AOutAO2(2) AO,146		R/W 0100.0%		57	06: Write single HB=20s / COV=2%
I/O reliability & control	BAcnet object	R/W	Note		Register address	Function code, Polling / heartbeat / COV
Reliability of differential pressure P1	DiffPP1Rlb(2) MVAL,788	R	BACnet	reliability definitions	4	03: Read holding Pooling=16s
Reliability of differential pressure P2	DiffPP2Rlb(2) MVAL,789	R	BACnet	reliability definitions	6	03: Read holding Pooling=16s
Reliability of analog input Al1	AlnAl1Rlb(2) MVAL,791	R	BACnet	reliability definitions	20	03: Read holding Pooling=16s
Reliability of analog input AI2	AInAI2Rlb(2) MVAL,793	R	BACnet reliability definitions		50	03: Read holding Pooling=16s
Setting	BAcnet object	R/W	Note		Register address	Function code Polling / heartbeat / COV
Signal type of input Al1	Al1InSigTyp(2) MVAL,792	W		Pt1000 / LG-Ni1000 / : / Ni1000	22	06: Write single On change
Signal type of input Al2	Al2InSigTyp(2) MVAL,794	W	None / 0)10V	52	06: Write single On change

For additional information, refer to the QBM97.. datasheet, see "Documentation and short description of compatible devices [\rightarrow 11]".

6.2.4 Ebm-papst supply air fan

Slave address: 1

Notes

- The fan configuration must be set with ebm-papst tool "EC Control"
- The configuration depends on the specific use case
- The following settings are required or recommended

Setting	Parameter	Value
Communication parameters	Device address (required)	1
	Communication speed (required)	19200
	Communication parity (required)	8E
Device status	Source of set value (required)	RS485/Bus
	Save set value to EEPROM (required)	No
Fail-safe function	Fail-safe mode (recommended)	Fail safe speed value
	Set fail safe speed % (recommended)	0
	Time lag fail safe speed s	26
	(recommended, must be higher than default heartbeat: 20 s)	

For additional information please refer to the manufacturer's web site <u>https://</u><u>www.ebmpapst.com</u>.

You can contact a local representative, access downloads and get more technical information for the fan.

BACnet object / device register assignment

Actual I/O values	BACnet object	R/W	Note	Register address	Function code
Supply air fan speed	FanSuSpd AO,149	RW		53250	06: Write single
Supply air fan fault	FanSuFlt Bl,144	R		53266	04: Read input Bit 4
Supply air fan speed feedback	FanSuSpdFb Al,163	R		53265	04: Read input
Suppyl air fan total operating hours	FanSuOphTot Al,161	R		53258	03: Read holding

I/O reliability & control	BACnet object	R/W	Note	Register address	Function code Polling / heartbeat / COV
Supply fan error code	FanSuErrCode AVAL,682	R	0: No error > 0: see EBM Papst	53266	04: Read input
Supply fan warning code	FanSuWarnCode AVAL,683	R	0: No error > 0: see EBM Papst	53267	4: Read input
Supply fan reset	FanSuRst BO,102	RW	Pulse, executed by acknowledge or reset	53249	06: Write single Bit 0

Remark

The above information is available for all ebm-papst Modbus fans with interface version \geq 5.0 (2012). Depending on the type of fan, additional information is available. The application does not read this additional information, as reading causes malfunction on some types of fans.

Error and warning codes are shown as decimal value, for example error code '17'. They must be converted into a bit string, for example '0000 0000 0001 0001'. According to EBM Papst documentation, this means FB (General fan fault) and PHA (Phase error).

When using a Modbus fan, both fans must be Modbus fans.

6.2.5 Ebm-papst exhaust air fan

Slave address: 2

Notes

- The fan configuration must be set with ebm-papst tool "EC Control"
- The configuration depends on the specific use case
- The following settings are required or recommended

Setting	Parameter	Value
Communication parameters	Device address (required)	1
	Communication speed (required)	19200
	Communication parity (required)	8E
Device status	Source of set value (required)	RS485/Bus
	Save set value to EEPROM (required)	No
Fail-safe function	Fail-safe mode (recommended)	Fail safe speed value
	Set fail safe speed % (recommended)	0

For additional information please refer to the manufacturer's web site <u>https://</u><u>www.ebmpapst.com</u>.

You can contact a local representative, access downloads and get more technical information for the fan.

Actual I/O values	BA-objects	R/W	Note	Register Address	Function code
Exhaust air fan speed	FanEhSpd AO,150	RW		53250	06: Write single
Exhaust air fan fault	FanEhFlt Bl,145	R		53266	04: Read input Bit 4
Exhaust air fan speed feedback	FanEhSpdFb Al,164	R		53265	04: Read input
Exhaust air fan total operating hours	FanEhOphTot Al,162	R		53258	03: Read holding

BACnet object / device register assignment

I/O reliability & control	BA-object	R/W	Note	Register address	Function code Polling / heartbeat / COV
Exhaust fan error code	FanEhErrCode AVAL,688	R	0: No error > 0: see ebm-papst	53266	04: Read input
Exhaust fan warning code	FanEhWarnCode AVAL,689	R	0: No error > 0: see ebm-papst	53267	4: Read inpu
Exhaust fan reset	FanEhRst BO,103	RW	Pulse, executed by acknowledge or reset	53249	06: Write single Bit 0

Remark:

Above information is available for all ebm-papst Modbus fans with interface version ≥ 5.0 .

Error and warning codes are shown as decimal value, for example error code '17'. They must be converted into a bit string, for example '0000 0000 0001 0001'. According to EBM Papst documentation, this means FB (General fan fault) and PHA (Phase error).

When using a Modbus fan, both fans must be Modbus fans.

6.2.6 Zero pressure calibration

- Both devices (POS9.., QBM97..) have integrated pressure sensors and therefore also inbuilt zero-pressure-calibration mechanisms.
- To perform calibration, all pressure hoses must be disconnected and exposed to the same ambient pressure.
- The calibration process can be manually initiated by activating the calibration parameter.

Parameter	BACnet object	R/RW	Note
Zero pressure calibration trigger POS9	ZePClbTrgPos9 MVAL, 628	RW	1: Ready 2: Trigger (initiates calibration)
Zero pressure calibration trigger QBM #1	ZePClbTrgQbm MVAL, 638	RW	1: Ready 2: Trigger (initiates calibration)
Zero pressure calibration trigger QBM #2	ZePClbTrgQbm(2) MVAL, 790	RW	1: Ready 2: Trigger (initiates calibration)

6.3 Modbus slave

6.3.1 Use cases for Modbus slave engineering

The 'Modbus Slave BAcnet Adapter' allows to modify parameters during runtime and supports the following use cases:

- Read/write data items for operation and monitoring by a third party HMI.
- Read/write data items for automation and control functions by a third party Building Automation and Control System (BACS).

6.3.2 Port description and default settings

The 2 Modbus slave interfaces:

Modbus Slave Port1	Modbus Slave Port2
Terminal: T12	Terminal: T16
Address: 1	Address: 2

The default settings are the same for both interfaces:

Baudrate	19200 Bd
Data	8 Bit
Parity	Even
Stop bit	1

6.3.3 Port adjustments

The 2 ports are preconfigured. You can make any required changes to the configuration via a BACnet browser, e.g. YABE browser. Choose the following BAcnet objects for Modbus slave configuration:

Setting (long name)	BACnet object
Infra'NwkPortI	NwkPort,2
P_1	Object type 264
Infra'NwkPortI	NwkPort,3
P_2	Object type 264

ŝ

Setting, long name	Property #, short name	Description
Line termination	4698: LnTrmnt	On board line termination can be switched on (TRUE) / off (FALSE).
Inter-Char-Timeout-Scale	4773: IntFrmTime	Maximum delay between characters within a Modbus frame
		Standard timeout depends on configured baud rate and is normally 1.5 x characters times.
		Standard timeout corresponds to 100% and is set as default
Inter-Frame-Time-Scale	4774: IntChrTiout	Minimum delay time between two Modbus frames
		Standard wait time depends on configured baud rate and is normally 3.5 x characters times.
		Standard wait time corresponds 100% and is set as default
Stop Bit definition	4775: StopBits	
Parity definition	4776: Parity	
Baud rate selection	4777: Baud	Baud rates of 9600 and 19200 baud must be supported as per Modbus standard.
		Additional supported baud rates must be tested to ensure full functionality.
Send command	4894: Command	Apply changes of Modbus slave configuration. Controller will automatically reboot. After restarting, new settings will take effect.

Both BACnet objects have the following properties:

Entry values in BACnet browser tools, e.g. Yabe

The following relationships apply for stop bit, parity and baud rate:

Application parameter value	BACnet browser entry
Sto	op bits
1	1
2	2
Р	arity
No	1
Even	2
Odd	3
Mark	4
Space	5
Bai	ud rate
300	0
600	1
1200	2
2400	3
4800	4
9600	5
19200	6
38400	7
57600	8
76800	9
115200	10

6.3.4 R/W communication functions (supported function codes)

The controller supports the following function codes (FCs):

Read Input Registers, FC=04

Request	Function code	1 Byte	0x04
	Starting Address	2 Bytes	0x0000 to 0xFFFF
	Quantity of Input Registers	2 Bytes	0x0001 to 0x007D
Response	Function code	1 Byte	0x04
	Byte count	1 Byte	2 × N*
	Input Registers	N* x2 Bytes	
	*N = Quantity of Input R	egisters	
Error	Error code	1 Byte	0x84
	Exception code	1 Byte	01 or 02 or 03 or 04
	 Quantity of input reg The register data in The first byte contain 	the response message the high order bits ar	in one step. is packed as 2 bytes per register. id the second contains the low
	 Quantity of input reg The register data in the first byte contain order bits of the register data in the request messages and first. 	isters n = 1125. the response message is the high order bits ar ster. age the 2 bytes of the fi	is packed as 2 bytes per register.
Request	 Quantity of input reg The register data in the first byte contain order bits of the regis In the request messates sent first. 	isters n = 1125. the response message is the high order bits ar ster. age the 2 bytes of the fi sters, FC=03	is packed as 2 bytes per register. Ind the second contains the low rst register (Starting Address) are
Request	 Quantity of input reg The register data in the first byte contain order bits of the register data in the first byte contain order bits of the register bits of	isters n = 1125. the response message ns the high order bits ar ster. age the 2 bytes of the fi sters, FC=03	is packed as 2 bytes per register. ad the second contains the low rst register (Starting Address) are 0x03
Request	 Quantity of input reg The register data in the first byte contain order bits of the regis In the request messates sent first. 	isters n = 1125. the response message is the high order bits ar ster. age the 2 bytes of the fi sters, FC=03	is packed as 2 bytes per register. Ind the second contains the low rst register (Starting Address) are
Request Response	 Quantity of input reg The register data in the first byte contain order bits of the register data in the first byte contain order bits of the register bits of the register	isters n = 1125. the response message ns the high order bits an ster. age the 2 bytes of the fi sters, FC=03	is packed as 2 bytes per register. ad the second contains the low rst register (Starting Address) are 0x03 0x0000 to 0xFFFF
	Quantity of input reg The register data in the The first byte contain order bits of the register In the request messar sent first. Read Holding Regi Function code Starting Address Quantity of Registers	isters n = 1125. the response message ns the high order bits an ster. age the 2 bytes of the fi sters, FC=03 1 Byte 2 Bytes 2 Bytes	is packed as 2 bytes per register. ad the second contains the low rst register (Starting Address) are 0x03 0x0000 to 0xFFFF 1 to 125 (0x7D)

*N = Quantity of Input Registers

Error code	1 Byte	0x83
Exception code	1 Byte	01 or 02 or 03 or 04

- A block of contiguous holding registers is read in one step. Quantity of holding registers n = 1...125.
- The register data in the response message is packed as 2 bytes per register. The first byte contains the high order bits and the second contains the low order bits of the register.
- In the request message the 2 bytes of the first register (Starting Address) are sent first.

6

Error

Request	Function code	1 Byte	0x06
	Register Address	2 Bytes	0x0000 to 0xFFFF
	Register Value	2 Bytes	0x0000 to 0xFFFF
Response	Function code	1 Byte	0x06
	Register Address	2 Bytes	0x0000 to 0xFFFF
	Register value	2 Bytes	0x0000 to 0xFFFF
Error	Error code	1 Byte	0x86
	Exception code	1 Byte	01 or 02 or 03 or 04

Write Single Register, FC=06

Write Multiple Register, FC=16

Function code	1 Byte	0x10
Starting Address	2 Bytes	0x0000 to 0xFFFF
Quantity of Registers	2 Bytes	0x0001 to 0x007B
Byte Count	1 Byte	2 x N*
Registers Value	N* x 2 Bytes	value

*N=Quantity of Registers

Function code1 Byte**0x10**Starting Address2 Bytes0x0000 to 0xFFFFQuantity of Registers2 Bytes1 to 123 (0x7B)Error code1 Byte**0x90**Exception code1 Byte01 or 02 or 03 or 04

- A block of contiguous registers is written in one step. Quantity of registers n = 1...123.
- The requested written values are specified in the request data field. Data is packed as 2 bytes per register, i.e. byte count = 2 x n.
- In the request message the 2 bytes of the first register (Starting Address) are sent first.

6

Request

Response

Error

More information

The write request contains:

- Address of the Modbus slave
- Function code (FC)
- Start Address
- Depending on FC: additional control information to define the amount of data to be written (NO. of elements, ByteCount).
- Data to be written

A positive response contains:

- Response FC = Request FC
- Response start address = Request start address
- Depending on FC:
 - written data:
 - response data is read back from the BA-object to indicate e.g. min/max truncation (no simple echo of the request).
 - or:
 - information to indicate the number of written data elements

An **exception** response, if the server is unable to process the write request. The objective is to provide to the client relevant information concerning the error detected during processing:

- The exception FC = request FC + 0x80.
- An exception code is provided to indicate the reason of the error.

Code	Name	Meaning
01	ILLEGAL FUNCTION	Function code received in the request is not supported by the server.
		Or: Server is currently unable to process the request, e.g. because it is un-configured.
02	ILLEGAL DATA ADDRESS	The register address/starting address received in the request is not an allowable address for the server.
		Or: The combination of starting address and quantity of registers is invalid, e.g. for a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99.
		If a request is submitted with a starting address of 96 and the quantity of registers is 4, the request succeeds (address-wise at least) on registers 96, 97, 98, 99.
		If a request is submitted with a starting address of 96 and the quantity of registers is 5, the request fails with exception code 0x02 "Illegal Data Address" since it attempts to operate on registers 96, 97, 98, 99 and 100, and there is no register with address 100.
		In the event of bulk read/write if there is address gap between data items in the given address range.
03	ILLEGAL DATA VALUE	A data type contained in the write data is not an allowable value for the server.
		This indicates a fault in the structure of the remainder of a complex request, such as that the implied data length is incorrect (data type mismatch).
		However, it specifically does NOT mean that a data item submitted for storage in a register has a value outside the allowed min / max range, since the Modbus protocol is unaware of the significance of any particular value of any particular register.
04	SERVER DEVICE	An unrecoverable error occurred while the server was attempting to perform the requested action, e.g.
	FAILURE	Master tries to write read-only data item
		Access to unsupported BA-Object type, mapping is not possible
		Master tries to write data fragments, illegal data, etc.

6.3.5 Encoding of data types

i

Data is provided as Big Endian without swapping.

Binary value encoding with one Register:

Each binary BA present value will occupy 1 register

Data type	Byte order
Binary value, bitstring1, bitstring8, bitstring16, unsigned8 or unsigned16	00 aa, with aa = 0x00 or 0x01

Multistate value encoding with one Register:

Each multistate BA present value will occupy 1 register

Data type	Byte order
Multistate value (8 bit), unsigned8	00 aa, with 1:1 BACnet encoding
Multistate value (16 bit), unsigned16	bb aa, with 1:1 BACnet encoding

Unsigned integer value encoding with 2 registers

Each unsigned BA present value will occupy 2 registers. Use FC16 for consistent writing.

Data type	Byte order						
Unsigned integer (32 bit), unsigned32	dd cc bb aa						
	dd cc	Register address x					
	bb aa	Register address x+1					

Real value encoding with 2 registers

Each analog BA present value will occupy 2 registers. Use FC16 for consistent writing.

Data type	Byte order						
Real value (32 bit), Float32	dd cc bb aa						
	dd cc	Register address x					
	bb aa	Register address x+1					

With:

	Byte	d	d				Byte cc							Byte bb						Byte aa									
sign ex	sign exponent (8 bits) fraction (23 bits)														_														
	1 1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31 30					:	23	22	2 (bit i					t ir	nde	ex))													• 0
IEEE-754	4 32	-bi	t fl	oa	t e	nc	od	ing	3																				

Encoding of text string with multiple Registers

- BA-Properties representing text information are encoded as UTF8 text string.
- Pair wise mapping of two bytes of the text string to one MODBUS Register.
- The first byte of the text string is mapped to the MSB of the 1st MODBUS Register (with the lowest Register address).
- On MODBUS the string is NUL terminated. Unused Registers or the LSB of the last used Register shall contain the value NUL.

Example: BA-property, max. string length 20 byte, containing the string "hello world" would be mapped to 10 MODBUS Registers as follows:

Register address	Regist	er data			
x	h	e			
x+1	I	I			
x+2	0				
x+3	w	0			
x+4	r	I			
x+5	d	NUL			
x+6	NUL	NUL			
x+7	NUL	NUL			
x+8	NUL	NUL			
x+9	NUL	NUL			

Encoding of Date, Time information with multiple Registers

Register address	Da	ate				
x	Year (100199)	Month (112)				
x+1	DayOfMonth (131)	DayOfWeek (17)				
	Tii	me				
x+2	Hours (0023)	Minutes (0059)				
x+3	Seconds (0059)	HundredthsOfASecond (0099)				

Date: Date encoding uses 2 MODBUS Registers. • Date.Year: Represents year minus 1900. Note: Date information can only be from 2000.1.1 to 2099.12.31. • 1:1 mapping of BA-Date.Year (1 octet) to Register bit15...bit8. • Date.Month: Represents month 1...12. • 1:1 mapping of BA-Date.Month (1 octet) to Register bit7...bit0. • Date.DayOfMonth: Represents day of month 1...31. • 1:1 mapping of BA-Date.DayOfMonth (1 octet) to Register bit15...bit8. Date.DayOfWeek: Represents day of week 1...7 and 1:1 mapping of BA-Date.DayOfWeek (1 octet) to Register bit7...bit0. Time: Time encoding uses 2 MODBUS Registers. • **Time.Hours:** Represents hours 0...23. • 1:1 mapping of BA-Time.Hours (1 octet) to Register bit15...bit8. • Time.Minutes: Represents minutes 0...59. • 1:1 mapping of BA-Time.Minutes (1 octet) to Register bit7...bit0. • Time.Seconds: Represents seconds 0...59. • 1:1 mapping of BA-Time.Seconds (1 octet) to Register bit15...bit8. Time.HundredthsOfASec Represents hundredths of a second 0...99. • ond: 1:1 mapping of BA-Time.HundredthsOfASecond (1 octet) to Register bit7... bit0.

Example:

Date				Time							
Date Value					303312128 =0x12142D00	D					
Year Result (Year +1900)	Month	Day	DayofWeek (1~7)	Hour	Minute	Second	Millisecond (Reserved)				
bit31~bit24	bit23~bit16	bit15~bit8	bit7~bit0	bit31~bit24	bit23~bit16	bit15~bit8	bit7~bit0				
2019	8	23	5	18	8	10					

6.3.6 Mapping application parameters to Modbus registers

Applications parameters support either extended or basic read/write mechanism.

Extended read/write

Max-Present-Value

The following extended mapping examples illustrate:

- BA analog output object represented on Modbus by 4 holding registers •
- BA analog input object represented on Modbus by 4 input registers •
- Data item size is 4 in both cases •

Present-Value	38m³/h	
Priority-Array [116]		
Present-Priority	15 -	
Relinquish-Default	0m³/h	Holding Data item structure
Tracking-Value	38m ³ /h	Register Addr Data item structure
Status-Flags		x Present-Value
Reliability	no-fault	x+2 Status-Flags Cmd (=ready)
Out-Of-Service	false	x+3 Reliability
Units	m³/h	
Resolution	0.1m ³ /h	
Min-Present-Value	0m ³ /h	
Max-Present-Value	80m ³ /h	
Analog-Input		
Present-Value	50.0%	
Tracking-Value	50.0%	
Update-Count	n	
opuate-count		
Status-Flags		Input Data item structure
<u> </u>	 no-fault	Register Addr Data item structure
Status-Flags		Register Addr Data item structure
Status-Flags Reliability	no-fault -	Register Addr Data item structure X Present-Value x+1 Status-Flags void field (etc.)
Status-Flags Reliability Out-Of-Service	no-fault false	Register Addr Data item structure
Status-Flags Reliability Out-Of-Service Units	no-fault false %	Register Addr Data item structure X Present-Value x+1 Status-Flags void field (etc.)

Example of an analog input object (extended read):

100%

Input register address	Data item structure	
X	Present value	
X+1		
X+2	Status flags	Voidfield(=0:0)
X+3	Reliability	

Example of an analog output or value object (extended read/write):

Holding register address	Data item structure									
X	Present value									
X+1										
X+2	Status Flags	Cmd(=Ready)	Priority							
X+3	Reliability									

Register address	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
х		Present value														
x+1	1															
x+2	r(0)	r(0)	r(0)	r(0)	Status flags Cmd Priority											
x+3		Reliability														

Data item structure for 32bit data and Mapping=Extended

For analog output / value objects, MODBUS Master is expected to send one of the following MODBUS write requests, all three options are accepted:

- WriteMultipleReg.req (FC=16, StartAddr, QuantityOfReg=4, ByteCount=8, data=(2 Registers with 32bit real value; 1 Register with Cmd and Priority field; 1 Register with void value))
- WriteMultipleReg.req (FC=16, StartAddr, QuantityOfReg=3, ByteCount=6, data=(2 Registers with 32bit real value; 1 Register with Cmd and Priority field))
- WriteMultipleReg.req (FC=16, StartAddr, QuantityOfReg=2, ByteCount=4, data=(2 Registers with 32bit real value)). In this case, Default-Priority 13 is used

Example of a binary/multistate input object (extended read):

Input register address	Data item structure	
X	Present value	
X+1	Status flags	Voidfield(=0:0)
X+2	Reliability	

Example of a binary/mutistate output object (extended read/write):

Holding register address	Data item structure)	
Х	Present value		
X+1	Status Flags	Cmd(=Ready)	Priority
X+2	Reliability		

Register Address	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
х		Present value														
x+1	r(0)	r(0)	r(0)	r(0)	Status flags Cmd Priority											
x+2		Reliability														

Data item structure for 16bit data and Mapping=Extended

For binary and multistate output and value objects, the MODBUS Master is expected to send one of the following MODBUS write requests, all four options are accepted:

- WriteMultipleReg.req (FC=16, StartAddr, QuantityOfReg=3, ByteCount=6, data=(1 Register with 16bit multistate value; 1 Register with Cmd and Priority field; 1 Register with void value))
- WriteMultipleReg.req (FC=16, StartAddr, QuantityOfReg=2, ByteCount=4, data=(1 Register with 16bit multistate value; 1 Register with Cmd and Priority field))
- WriteMultipleReg.req (FC=16, StartAddr, QuantityOfReg=1, ByteCount=2, data=(1 Register with 16bit multistate value)). In this case, Default-Priority 13 is used.
- WriteSingleReg.req (FC=06, StartAddr, 16bit multistate value). In this case, Default-Priority 13 is used.

Status flags:

- Read only bitset with BACnet encoding of status flags 'In-Alarm', 'Fault', 'Overridden' and 'Out-of-Service' in case of Modbus read response.
- Void field (0;0;0;0) in case of Modbus write request to be ignored by the Modbus Slave BA adapter.

b3	b2	b1	b0
	Status	flags	

- b0: In Alarm
- b1: Fault
- b2: Overridden
- b3: Out of service

Status flag is an exception, see table below with a comparison on parameters read from Modbus and BACnet.

	Object and property		Comparison
	basic	Present value	Same value
O&M		Present value	Same value
Odivi	extend	status flag	Bit swapped
	extend	priority	Same value
		reliability	Same value
		System-Status	Same value
		(0:operational;	Same value
		2:download required)	
		Local-Date	Same value
Dev	vice	Local-Time	Same value
		Equipment-ID	Same value
		Serial-Number	Same value
		Model-Information	Same value
		Firmware-Revision	Same value
		Application-Software- Version	Same value
		Supported-Languages	Same value
		MODBUS-Session- Language	Same value
		Entry	Same value
Och	edule	Schedule default	Same value
Sche	culle	present value	Same value
		status flag	Bit swapped
		reliability	Same value

- **Cmd**: Multistate command in combination with priority field (for BA output objects and process value objects only) for commanding / writing present value
 - Cmd = 0: Ready
 - Cmd = 1: Command new value
 - Cmd = 2: Relinquish

- Cmd = 3...7: Reserved Cmd values
- **Priority**: to write or relinquish the BA priority slot (for BA output objects and process value objects only)
 - Represents BA present priority (1...17) in case of Modbus read response
 - Contains the priority of the priority slot to be written or relinquished in case of Modbus write request, only prio 1, 8, 13 can be written.
 NOTICE! Operators need to be aware of the risk of override physical outputs by prio1.
 - Priority field is void for BA object types without priority array support.
- Modbus write request: Allowed combinations of Cmd and Priority
 - for BA output objects and process value objects:

Cmd	Priority	Description
0: ready, or >2: reserved values	Don't care	Not allowed, to be discarded by the server
1: command new value	116	To write the BA priority slot according to the priority field
	0 or >16	Not allowed, to be discarded by the server
2: relinquish	116	To relinquish the priority slot according to the priority field
	0 or >16	Not allowed, to be discarded by the server

for BA object types without priority array support, e.g. Config (Ref) value object:

Cmd	Priority	Description
0: Ready, or >2: reserved values	Don't care	Not allowed, to be discarded by the server
1: Command new value	Don't care (0)	To write BA present value. Priority field is ignored by the server. We recommend that the client sets the priority field to zero in the request message
2: Relinquish	Don't care	Not allowed, to be discarded by the server

Modbus read response: Allowed combinations of Cmd and Priority
 – for BA output objects and process value objects:

Cmd	Priority	Description
0: Ready	117	Field Cmd is reset to 'ready' by the Modbus Slave BA Adapter after the write command is executed.
		Field Priority represents property present priority
other values	Don't care	Not allowed

 for BA object types without priority array support, e.g. Config Ref value object:

Cmd	Priority	Description
0: Ready	Don't care (0)	Field Cmd is reset to 'ready' by the Modbus Slave BA Adapter after the write command is executed
		Field Priority is void. We recommend that the server sets the priority field to zero in the response message
other values	Don't care	Not allowed

Reliability:

- 16 bit enumeration with BACnet reliability encoding for a Modbus read response.

- Void field (0) for a Modbus write request: To be ignored by the 'Modbus Slave BA Adapter'.

Reserved fields r(0) are set to zero by the sender and ignored by the receiver.

Basic read/write

The mapping mechanisms are the same as for extended mapping, but without the 2 registers to map BA-Status-Flags, Priority and Reliability.

Example of a binary/multistate input object with basic read:

Input register address	Data item structure
X	Present value

Example of an analog/unsigned object with basic read:

Input register address	Data item structure
X	Present value
X+1	

The address distribution is based on the following rule:

Command	Object type	Mapping	Address range
Read	Analog/Unsigned	Extend	3x0000~3x0999
		Basic	3x1000~3x1999
	Binary/Multistate	Extend	3x2000~3x2999
		Basic	3x3000~3x3999
Read/write	Analog/Unsigned	Extend	4x0000~4x0999
		Basic	4x1000~4x1999
	Binary/Multistate	Extend	4x2000~4x2999
		Basic	4x3000~4x3999
Read/write	Schedule	-	4x6000~
Read/write	Device information	-	4x9000~

6.3.7 Edit schedule

A BA-weekly schedule has 7 daily schedules (corresponding to Monday – Sunday). Each daily schedule includes a list of [Time, Value] in pairs. The list describes the sequence of scheduled actions for a given day of the week.

The data structure of each [Time, Value] pair is encoded in 2 MODBUS holding registers with the following structure:

Register Address	b15	b1 4	b1 3	b1 2	b1 1	b1 0	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
х	NULLVal Hours (0023; 0x7F) Minutes (0059; 0xFF)															
X+1	Value															

MODBUS structure for [Time, Value] pair (16bit)

- Mapped time information on MODBUS does not support encoding in seconds and hundredths of a second.
- Flag NULLVal = 1: Encode Value= NULL, i.e. it disables this entry.
- Flag **NULLVal** = 0: Field value is a valid value ≠ NULL, i.e. this enables this time entry.
- Void [Time, Value] pair is encoded with Hours = 0x7F and Minutes = 0xFF. In this case, the field value is interpreted as a void value.
 - Depending on the schedule type, the register value can be:
 - A multistate Value >0, encoded at 16 bit
 - Or a binary where only the values 0x0000 or 0x0001 are allowed.
 - Example: multistate ROpMod encoding.

Register Address	Register Value												
х	NULLVal :0	Hours: 00	Minutes 00										
X+1	Unoccupied (Value=2)												
X+2	NULLVal :0	Hours: 06	Minutes 00										
X+3	Economy (Value=3)												
X+4	NULLVal :0	Hours: 22	Minutes 30										
X+5	Unoccupied (Value=2												
X+6	NULLVal :1	Hours: 0x7F	Minutes 0xFF										
X+7													
X+30	NULLVal :1	Hours: 0x7F	Minutes 0xFF										
X+31													

MODBUS structure for daily-schedule for 16bit OpMode value X=Schedule register address

- MODBUS mapping of the BA-daily-schedule reserves a fixed number of 16 [Time, Value] pairs.
- The [Time, Value] entries are sorted (by time, ascending).
- We recommend starting the 1st entry at [00:00,Value] for a clear value definition after midnight (the BA schedule default may otherwise be active).

- The last valid entry (by time, ascending) with a valid schedule entry (i.e. valid time info) defines the value to the end of the day (23:59:59.99).
- Additional void entries (if any) with NULLVal=F, Hour = 0x7F and Minutes = 0xFF are applicable until the 16th and last entry at the end of the list.

MODBUS mapping of one daily schedule thus occupies a fixed size of 32 registers, which easily fit in one MODBUS Read Holding register response message or Write Holding register request message.

- The MODBUS Master can read part of a daily schedule, or even one register representing Time or OpMod information.
- We recommend, however, reading the entire daily schedule for consistency reasons as well as the corresponding 32 registers in one pass.
- The MODBUS Master CANNOT write parts of a daily schedule, or even only one register representing a data fragment with Time or OpMod information!

To maintain consistency of daily schedule information, the master must write the entire daily schedule including void entries at the end of the list and the corresponding 32 registers in one pass.

The MODBUS Master writes the entire daily schedule with 16 sorted [Time, Value] entries (by time in ascending order).

The BA weekly schedule consists of 7 daily schedules corresponding to Monday – Sunday and additional BA-Properties.

Register Address	Mapped BA-Schedule information
x	Daily-Schedule Mo
x+32	Daily-Schedule Tu
x+64	Daily-Schedule We
x+96	Daily-Schedule Th
x+128	Daily-Schedule Fr
x+160	Daily-Schedule Sa
x+192	Daily-Schedule Su
x+224	Reserved Registers
 x+255	
Register Address	
x+256	Another Weekly-Schedule
 x+511	

Data-Item-Size is therefore a fixed 256 registers per the weekly schedule.

MODBUS structure for Data-Type=WeeklySched16bit X=Schedule register address

- 7x16 daily schedule entries for Mo Su are mapped to MODBUS Holding registers, with 7 x 32 registers, i.e. 224 registers.
- Mapping starts with the first 32 registers for the daily schedule Monday.
- The last 32 used registers are allocated to map daily schedule Sunday.
- 32 spare register addresses are reserved and unused at the upper end of the data item address space.

ŝ

6.3.8 Device information

The device information occupies a total 1024 registers, starting with holding registers 4x9000.

4x9000~4x9767: Are reserved for basic device information such as Local Date, Local Time, Device ID, Language selection, etc.

Register Address	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	Read/ Write
9001	System-Status																
	Local-Date											Write access					
9002	Year (100199, 0xFF) Month (112, 0xFF)																
9003	DayOfMonth (131, 0xFF) DayOfWeek (17, 0xFF)																
	Local-Time																
9004	Hours (0023; 0xFF) Minutes (0059; 0xFF)																
9005	Seconds (0059; 0xFF) HundrethsOfASecond (0099; 0xFF)																
9006 9037	Nan	Equipment-ID (string -> 32 Registers)(Property:4895) Name of the equipment. Can be used by the manufacturer to define the name of the unit during the production process (as it is a R/W BACnet object).										Read only					
9038 9069		Serial-Number (string -> 32 Registers) (Property:5100)										_					
9070 9101		Model-Information (string -> 32 Registers) (Property:4827)															
9102 9165					Firmw	are-Rev	vision (s	string ->	> 64 Re	gisters)	(Prope	erty:44)					
9166				App	ication-	Softwa	re-Vers	ion (str	ing -> 6	4 Regis	sters) (I	Property	y:12)				
 9229	Description of internal HRV application data. The label 'AP=xxx' can be used by the manufacturer to define the type of the unit in ABT Site ('Template name')																
9230					Supp	orted-L	anguag	es (bits	set, 64 b	oits) (Pr	operty:	4948)					
 9233																	
9234	Active-Language (enum) (Property:4949)																
9235	Reserved registers (532) for future extensions (additional data items for the Device-Object or other infrastructure related objects)																
 9767			(add	itional o	lata iter	ns for t	ne Dev	ice-Obj	ect or o	ther infi	rastruct	ure rela	ated obj	ects)			

6.3.9 Delivery of the application parameter list

The application parameter list is accessible via the delivery package on SIOS (Siemens Industry Online Support) at: <u>https://support.industry.siemens.com/cs/us/en/view/109776501</u>.

Note: the list is part of the complete package and therefore always compatible.

Issued by Siemens Switzerland Ltd Smart Infrastructure Global Headquarters Theilerstrasse 1a CH-6300 Zug +41 58 724 2424 www.siemens.com/buildingtechnologies